
CSM TRD 2007 08 01

Community Sensor Model (CSM)
Technical Requirements Document
Appendix C
Application Program Interface (API)

1 August 2007
Version 2.A Revision

Community Sensor Model (CSM) 1 August 2007
Application Program Interface (API) Version 2.A Revision

 i

REVISION HISTORY
(Re-baseline upon final approval)

Date Version Comments

1 October 2003 2.0 TSM Baseline CCB
8 September 2003

6 February 2004 3.0 CCB Changes
February 2004

30 July 2004

3.1 CCB Changes
May 2004

27 Sept 2004

3.1.1 Changes
documentation
aligns method and
appendix code

18October 2004 1.0 Joint Sensor Model
(JSM) 1.0 –
Equivalent to TSM
3.1.1

15 February 2005 2.0 Community Sensor
Model (CSM) 2.0
Adds CCB approved
changes from 18
Oct 2004 and 25
Jan 2005

1 August 2007 2.A Rev. Adds CCB
Approved SPR
2005_06_01_009_
Windows_Compile
_Info and Nov
2006

Community Sensor Model (CSM) 1 August 2007
Application Program Interface (API) Version 2.A Revision

 ii

 ACKNOWLEDGEMENTS
Information and text in this document were extracted from copyrighted documents provided by BAE
SYSTEMS while under contract to General Dynamics Advanced Information Systems for the Community
Sensor Model program.

In addition, this document includes inputs provided by Harris Corporation and Northrop Grumman, also under
contract to General Dynamics Advanced Information Systems for the Community Sensor Model program.

This document is a compilation of information and specific content from the Community Sensor Model
Government and Contractor team.

Community Sensor Model (CSM) 1 August 2007
Application Program Interface (API) Version 2.A Revision

 iii

NOTES

Community Sensor Model (CSM) 1 August 2007
Application Program Interface (API) Version 2.A Revision

 iv

Table of Contents

1 SCOPE .. 1

2 REFERENCE DOCUMENTS... 2
2.1 Government Documents... 2

2.1.1 Normative...2
2.1.2 Non-Normative ...3

2.2 Industry Documents/Technical References ... 3
3 TERMS AND DEFINITIONS.. 4

3.1.1 Sensor Exploitation Tool ..4
3.1.2 Community Sensor Model Definition..4
3.1.3 Application Program Interface..4
3.1.4 Parameter ..4
3.1.5 Math Model ..4
3.1.6 Plug-In..5
3.1.7 TSM Library..5
3.1.8 TSMPlugin Class..5
3.1.9 TSMPlugin Derived Class ..6
3.1.10 TSMSensorModel Class ..6
3.1.11 TSMSensorModel Derived Class...6
3.1.12 TSM Plugin Name..6
3.1.13 TSM Sensor Model Name..6
3.1.14 TSM Manufacturer Name...7
3.1.15 TSM_ISD Class..7
3.1.16 TSM Sensor Model State...7

4 GENERAL REQUIREMENTS ... 8
4.1 Guiding Principles... 8

4.1.1 Application Program Interface..8
4.1.2 Tactical Sensor Model..8

4.2 System Architecture.. 8
5 SPECIFIC REQUIREMENTS .. 10

5.1 Coordinate Systems.. 10
5.1.1 Image Coordinate System ...10
5.1.2 Ground Coordinate System ...11

5.2 Adjustable Sensor Model Parameters... 11
5.3 Proximate Imaging Locus / Remote Imaging Locus.. 11
5.4 Desired Precision / Achieved Precision.. 12
5.5 Sensor Model State ... 13
5.6 Sensor Model Naming Convention.. 13
5.7 Environment Variables ... 14
5.8 Conventions used in Describing Functions (Methods)... 14
5.9 TSMPlugin Class ... 15

5.9.1 TSMPlugin Class Object Definition ..15

Community Sensor Model (CSM) 1 August 2007
Application Program Interface (API) Version 2.A Revision

 v

5.9.2 Plugin Physical Requirements ...15
5.9.3 Sensor Model Selection and Construction...17
5.9.4 Adding and Removing Plugins...18
5.9.5 Explanation of “Plugin Registration”...20
5.9.6 Application Developer Responsibilities..20
5.9.7 Plugin Developer Responsibilities..22
5.9.8 Functionality Required within the Plugin..23

5.10 Detailed Plug-in Method Descriptions... 25
5.10.1 TSMPlugin::getList();..26
5.10.2 TSMPlugin::findPlugin(); ..28
5.10.3 TSMPlugin::removePlugin(); ..30
5.10.4 TSMPlugin::canISDBeConvertedToSensorModelState()32
5.10.5 TSMPlugin::canSensorModelBeConstructedFromState()34
5.10.6 TSMPlugin::canSensorModelBeConstructedFromISD()......................................36
5.10.7 TSMPlugin::constructSensorModelFromState() ..38
5.10.8 TSMPlugin::constructSensorModelFromISD()...40
5.10.9 TSMPlugin::convertISDToSensorModelState() ...42
5.10.10 TSMPlugin::getManufacturer()..44
5.10.11 TSMPlugin::getNSensorModels() ...46
5.10.12 TSMPlugin::getReleaseDate() ..48
5.10.13 TSMPlugin::getSensorModelName() ..50
5.10.14 TSMPlugin::getSensorModelNameFromSensorModelState()52
5.10.15 TSMPlugin::getSensorModelVersion()..54

5.11 Image Support Data (ISD) ... 56
5.11.1 NITF 2.0 ISD ..57
5.11.2 NITF 2.1 ISD ..58
5.11.3 Filename ISD ...59
5.11.4 Bytestream ISD..60

5.12 Sensor Model Functions... 61
5.12.1 tsmSensorModel::groundToImage() ..63
5.12.2 tsmSensorModel::imageToGround()..66
5.12.3 tsmSensorModel::imageToProximateImagingLocus()...69
5.12.4 tsmSensorModel::imageToRemoteImagingLocus() ..71
5.12.5 tsmSensorModel::computeGroundPartials()..73
5.12.6 tsmSensorModel::computeSensorPartials() ..75
5.12.7 tsmSensorModel::getCurrentParameterCovariance() ...78
5.12.8 tsmSensorModel::setCurrentParameterCovariance()..80
5.12.9 tsmSensorModel::setOriginalParameterCovariance() ...82
5.12.10 tsmSensorModel::getOriginalParameterCovariance()84
5.12.11 tsmSensorModel::getTrajectoryIdentifier()..86
5.12.12 tsmSensorModel::getReferenceDateAndTime()...88
5.12.13 tsmSensorModel::getImageTime()..90
5.12.14 tsmSensorModel::getSensorPosition() ...92
5.12.15 tsmSensorModel::getSensorVelocity()..94
5.12.16 tsmSensorModel::setCurrentParameterValue()..96
5.12.17 tsmSensorModel::getCurrentParameterValue() ...98
5.12.18 tsmSensorModel::getParameterName() ...100
5.12.19 tsmSensorModel::getNumParameters() ...102
5.12.20 tsmSensorModel::setOriginalParameterValue() ...104
5.12.21 tsmSensorModel::getOriginalParameterValue() ...106
5.12.22 tsmSensorModel::getParameterType()...108
5.12.23 tsmSensorModel::getPedigree() ...110
5.12.24 tsmSensorModel::getImageIdentifier()..112

Community Sensor Model (CSM) 1 August 2007
Application Program Interface (API) Version 2.A Revision

 vi

5.12.25 tsmSensorModel::setImageIdentifier() ..114
5.12.26 tsmSensorModel::getSensorIdentifier() ..116
5.12.27 tsmSensorModel::getPlatformIdentifier() ..118
5.12.28 tsmSensorModel::getImageSize()...120
5.12.29 tsmSensorModel::getSensorModelState() ..122
5.12.30 tsmSensorModel::getValidAltitudeRange()...124
5.12.31 tsmSensorModel::getIlluminationDirection() ...126
5.12.32 tsmSensorModel::getNumSystematicErrorCorrections()..............................128
5.12.33 tsmSensorModel::getSystematicErrorCorrectionName()..............................130
5.12.34 tsmSensorModel::setCurrentSystematicErrorCorrectionSwitch().................132
5.12.35 tsmSensorModel::getCurrentSystematicErrorCorrectionSwitch()134
5.12.36 tsmSensorModel::getReferencePoint()...136
5.12.37 tsmSensorModel::setReferencePoint() ...138
5.12.38 tsmSensorModel::getSensorModelName()...140
5.12.39 tsmSensorModel::setParameterType() ...142
5.12.40 tsmSensorModel::getCovarianceModel() ...144
5.12.41 tsmSensorModel::getUnmodeledError() ...146
5.12.42 tsmSensorModel::getUnmodeledCrossCovariance()148
5.12.43 tsmSensorModel::getCollectionIdentifier() ..150
5.12.44 tsmSensorModel::isParameterShareable()...152
5.12.45 tsmSensorModel::getParameterSharingCriteria()...154

Error Control .. 157
5.13 Memory Management.. 161

6 APPENDIX A HEADER FILES... 1
6.1 TSMPlugin.h... 1
6.2 tsm_ISD .. 5

6.2.1 TSMImageSupportData.h ..5
6.2.2 tsm_ISDNITF21.h ..6
6.2.3 tsm_ISDNITF20.h ..7
6.2.4 tsm_ISDByteStream.h..10
6.2.5 tsm_ISDFilename.h..11

6.3 TSMSensorModel.h ... 11
6.4 TSM Warnings and Errors .. 23

6.4.1 TSM Warning ...23
6.4.2 TSM Error...25

6.5 TSMMisc ... 27
6.6 TSMCovarianceModel ... 29

7 APPENDIX B ADDITIONAL EXPLANATION OF EXPORT SYMBOLS FOR WINDOWS
BUILDS.. 1

7.1 Introduction.. 1
7.2 Discussion ... 1

8 APPENDIX C COMPILING.. 1
8.1 Sun Solaris Forte or Workshop compiler: .. 1
8.2 GCC compiler: ... 4
8.3 Instructions for compiling and testing in Microsoft Windows: 6

Community Sensor Model (CSM) 1 August 2007
Application Program Interface (API) Version 2.A Revision

 vii

8.3.1 The Application Project vts ..7
8.3.2 The TSMAPI Project ..8
8.3.3 The Plugin Project..8
8.3.4 TSM File Tree ..8
8.3.5 Frequently Asked Questions..10

9 APPENDIX D EXAMPLE CPP FILES .. 1
9.1 TSMPlugin.cpp... 1

Community Sensor Model (CSM) 1 August 2007
Application Program Interface (API) Version 2.A Revision

 viii

LIST OF FIGURES
Figure 1 - TSM Context Diagram ...9
Figure 2 - Image Coordinate System ...10
Figure 3 - Sensor Model Parameter Components..11
Figure 4 - Imaging locus for Optical Imagery ...12

LIST OF TABLES
Table 1 - Applicable Government Documents..2
Table 2 - Reference Government Documents..3
Table 3 - Applicable Industrial Documents/Technical References ...3
Table 4 - Sensor Model Functions ...61
Table 5 - Date and Time Format ...88
Table 6 - Warnings ...159
Table 7 - Errors ..160

 1

1 SCOPE
This document supplements the functional requirements set forth in the Community
Sensor Model (CSM) Technical Requirements Document (TRD) and establishes the
requirements placed on the sensor model elements to interface with applications that
use the photogrammetric operations (math libraries) contained in the sensor model.
Both documents collectively establish the requirements allocated to the sensor model.

This document defines the Application Program Interface (API) between a plug-in
Community Sensor Model (CSM) and the host Sensor Exploitation Tool (SET). It
outlines the function calls that are available to the SET and describes how these
facilities are used. Additionally, this document specifies a minimum set of capabilities
that the CSM must provide for SET use.

While this interface supports a broad array of single image operations, only minimal
support to multi-image operations is available. The commmunity sensor model API does
not provide management of multi-image information, such as joint image error
covariance. Derived images produced through such operations as chipping, warping,
magnification, and mosaicing are supported by the commmunity sensor model API, but
only in the sense that the original image coordinate frame is referenced and relevant
support data is applied.

 2

2 REFERENCE DOCUMENTS

2.1 Government Documents

2.1.1 Normative

Document No. Title
MIL-STD-2500A National Imagery Transmission Format Version

2.0 for the National Imagery Transmission Format
Standard

MIL-STD-2500B National Imagery Transmission Format Version
2.1 for the National Imagery Transmission Format
Standard

STDI-0001 National Support Data Extensions (SDE) Version
1.3 for the National Imagery Transmission Format
(NITF)

STDI-0002 Compendium of Controlled Extensions for the
NITF Version 2.1

TR 8350.2 NIMA Technical Report 8350.2, DoD World
Geodetic System 1984 – Its Definition and
Relationship with Local Geodetic Systems

NIST Special Publication 811 NIST Guide for the Use of the International
System of Units (SI)

DCID 6/3 Director Central Intelligence Directive (DCID) 6/3

JDCSISS Joint DODIIS / Cryptologic SCI Information
Systems Security Standards

 Commmunity Sensor Model Technical
Requirements Document

 Sensor Model Glossary

Table 1 - Applicable Government Documents

 3

2.1.2 Non-Normative

Document No. Title
N0105-98 NITFS Standards Compliance and

Interoperability Certification Test and Evaluation
Program Plan

DoDI 5000.61 DoD Modeling and Simulation Verification,
Validation, and Accreditation

NUG-B USIGS Glossary Revision B

 Applicable Platform Developer Documents
ORDs

 Applicable Application Developer Documents
APIs

2.2 Industry Documents/Technical References

Document No. Title
ANSI IEEE 754-1985 Floating Point Arithmetic

ISO 8601:2000

ISO 8601:2000 (international standard for date
representation)

Table 2 - Reference Government Documents

Table 3 - Applicable Industrial Documents/Technical References

 4

3 TERMS AND DEFINITIONS

3.1.1 Sensor Exploitation Tool

A Sensor Exploitation Tool (SET) is any software with the capabilities to make use of
imagery resulting from a sensor. Examples of operations commonly performed by a
SET include mensuration, feature projection, extraction, registration, and uncertainty
propagation.

3.1.2 Community Sensor Model Definition

A Community Sensor Model (CSM) is a plug-in software library that provides support for
photogrammetric operations on imagery produced by a particular sensor. Underlying a
CSM is a mathematical model defining a coordinate transformation from that sensor’s
image space (2-dimensional) to ground space (3-dimensional). Through the
phenomenology, physics, and geometry of the image formation process, an imaging ray
from the sensor can be mapped onto the ground through a set of rigorous equations. It
is the responsibility of the CSM to perform this mapping through the abstract interface
provided by the application program interface. Please note the term “Tactical Sensor
Model, (TSM)” is used in this document and is symonomous with “Community
Sensor Model, (CSM)”. TSM was the name of the predecessor USAF program.

3.1.3 Application Program Interface

The Application Program Interface (API) provides a generalized, abstract interface
between a SET and a commmunity sensor model plug-in. This interface allows a SET
to utilize the functionality provided by a commmunity sensor model plug-in with minimal
knowledge about the image formation details of the sensor. The API is designed to
support a variety of military tactical imaging sensors, and although this interface
definition can support classified sensor models, the interface itself is generic enough to
remain unclassified.

Through the API, the sensor exploitation tool is provided a complete set of single image
photogrammetric operations in a sensor independent manner.

3.1.4 Parameter

The parameters referred to in this document are elements of the CSM math models,
which can be adjusted by the user.

3.1.5 Math Model

The CSM math models are the equations that translate the sensor system data into
information supporting imagery exploitation. This includes the equations required to

 5

accurately map the ground coordinates of the image, as well as the support data
depicting the uncertainty in the calculations based on the system elements as well as
their combined effects.

3.1.6 Plug-In

The term Plug-in refers to an independent software program with defined interfaces
which will operate with other applications but will not interfere with the operation of other
co-resident applications.

3.1.7 TSM Library

A TSM Library is a runtime linked library file conformant to the physical description in
section 5.9 that contains all functions and interface support specified in this API for TSM
plugins. This library shall include the implementation of concrete classes that derive
from the TSMPlugin and TSMSensorModel base classes, defined below, as well as a
static instance of the TSMPlugin-derived class.

Within the context of this document, the TSM Library refers to the single physical file
containing the compiled plugin object code, whereas the TSMPlugin and
TSMSensorModel classes refer to the set of functions contained within the library.

Note that the phrase “TSM plugin” is also used within this document to refer to the
combination of the physical entity of the TSM Library file together with the functions
provided by the library. Hence, TSM plugin is used almost synonymously with TSM
Library.

3.1.8 TSMPlugin Class

The TSMPlugin class is the base class for all TSM plugin derived classes that are
associated with real tactical sensors. It consists of a set of pure virtual methods that
provide functional support for managing TSM plugins, selecting among the available
TSMPlugin derived classes for any particular image, and for constructing a
TSMSensorModel object that can be used to perform sensor modeling operations for a
given tactical image. Pure virtual methods will need to be implemented by classes that
derive from this class.

This class also contains non-virtual methods to allow the application to manage the
static list of plugins. These list methods should not be used directly by the plugins.

This class is labeled as a plugin since it provides mechanisms that allow classes that
derive from it to be added easily to an installation without the need to recompile the
base application. Hence, the derived types are “plugins” to the base class. The
TSMPlugin class is compiled and linked into a separate runtime library, and is needed
by the application as well as the plugins at runtime. Classes that derive from it and that
are included in a TSM Library are “plugins” since they can be added at run time without

 6

the need to recompile source code. Section 5.9 and its subparagraphs provide
functional detail and requirements for the TSMPlugin base and derived classes.

3.1.9 TSMPlugin Derived Class

Within this specification, classes that derive from the TSMPlugin class, that are
associated with a real tactical sensor, that implement the pure virtual methods defined
within the TSMPlugin class, and that meet other requirements in this specification are
called TSMPlugin Derived Classes (or also TSMPlugin derived types). In addition to
implementing all pure virtual methods defined in the base class, there are several
additional requirements that must be met by each TSMPlugin derived class in order for
it to properly plug into the base class. These additional requirements are specified in
paragraph 5.9.8 and its subparagraphs.

3.1.10 TSMSensorModel Class

The TSMSensorModel class is the abstract base class for all commmunity sensor
models that are governed by this specification. This class will get compiled and linked
with the application at compile time, whereas classes that derive from it and that are
part of a TSM library can be added at run time without the need for any recompiling of
code. Section 5.12 and its subparagraphs provide functional detail and requirements
for the TSMSensorModel base and derived classes.

3.1.11 TSMSensorModel Derived Class

Within this specification, classes that derive from the TSMSensorModel class, that are
associated with a real tactical sensor, that implement the pure virtual methods defined
within the TSMSensorModel base class and that meet all other requirements for TSMs
are called TSMSensorModel derived classes (or derived types).

3.1.12 TSM Plugin Name

The TSM plugin name is a name string associated with a real TSMPlugin derived class
that uniquely identifies the TSMPlugin from all other TSMPlugin derived classes. See
paragraph 5.9.7.1 for requirements associated with this string.

3.1.13 TSM Sensor Model Name

A TSMPlugin may be capable of constructing multiple types of sensor models, each of
which is a TSMSensorModel derived class. The TSM Sensor Model Name is a name
string that uniquely identifies any given TSMSensorModel derived class regardless of
which TSM plugin creates it. See paragraphs 5.6 and 5.9.7.2 for requirements
associated with this string.

 7

3.1.14 TSM Manufacturer Name

The TSM manufacturer name is a name string that uniquely identifies the manufacturer
of a TSM plugin. See paragraph 5.9.7.3 for requirements associated with this string.

3.1.15 TSM_ISD Class

The TSM_ISD class is an externally defined class that provides a means to pass image
support data across the TSM API interface within a sensor independent structure. The
TSM_ISD class can be used for sensor model selection and/or construction. The
TSM_ISD class is used when processing an image from the native image file, or when
sensor model state data for the image is not available. The TSM_ISD class is the base
class for derived types of ISD classes, where derived types might be associated with
particular image file formats (such as NITF 2.0, or NITF 2.1). The TSM_ISD may
contain more information than is required to create a given sensor model. It may also
not contain all of the information required by a given sensor model. The application
software is responsible for creating TSM_ISD objects. See paragraph 5.11.

3.1.16 TSM Sensor Model State

TSM sensor model state defines a single image geometry in a single form, specific to a
particular image and sensor model type. The TSM sensor model state contains all
information required to create a specific sensor model for a given image. The sensor
model state includes no additional information. Sensor model state data is formatted as
a null-terminated ASCII character std::string where the first set of characters in the std::
string (up to and including the first newline character) shall be the sensor model name,
where the sensor model name is as defined above. See paragraph 5.5.

 8

4 GENERAL REQUIREMENTS

4.1 Guiding Principles

This section outlines the guiding principles underlying the application program interface
to the commmunity sensor models that will be used by the sensor exploitation software.
The characteristics and interactions of these two components can be found in the
Technical Requirements Document (TRD) which governs the TSM implementation. The
guiding principles behind each item are collected here for convenience.

4.1.1 Application Program Interface

The API is designed to provide a generic interface between a SET and a TSM plug-in.
The API should be generic enough such that any sensor providing a 2-dimensional
image representation of its environment and the necessary support data can be
exploited via the functions defined by the API.

The API is generalized in the sense that it is common across the various types of
sensor models supported and does not require the SET to have detailed knowledge of
image formation process for a specific sensor. In addition, the functions defined for the
sensor models allow them to be plugged into the SET such that sensor models can be
added or removed from a particular configuration without modification of the host
application code.

API design will use object oriented concepts.

The API should be sensor (i.e. SAR vs. EO), operating system (i.e. Windows vs. Unix)
and hardware (i.e. PC vs. Sun) independent.

4.1.2 Tactical Sensor Model

Initially, the SETs may require modifications to access the functionality of the TSMs in a
sensor independent manner, but will not require additional changes as more TSMs are
produced and released.

The TSM is responsible for extracting any necessary parameters from the sensor image
product.

4.2 System Architecture

Figure 1 displays the perspective of the TSM in its operational environment, specifically,
showing its relationship to the SET via the API. The figure shows example data that
may be passed between a given TSM and the SET and example functions. The figure
is not all encompassing.

 9

TSM n

SET

TSM 1
………..

Imagery and
Support Data

time & trajectory

original/adjusted parameters

original/adjusted covariance matrix

model state & info

SM
Management

Functions

SM
Geopositioning

Functions

SM
Constructor

Function

TSM
n

SET

TSM
1

Imagery and
Support Data

support data

SM
Management

Functions

SM
Geopositioning

Functions

SM
Constructor

Function

Image-Ground Transformation
Ground-Image Transformation
Image Locus
Uncertainty
Etc.

TSM Selection
Data Handling (open &close files)
Exercises TSM Functions
Performs Sensor Independent Functions

Provides known interface between
SET and TSM

API

Figure 1 - TSM Context Diagram

Below the API, the TSM has two distinct sets of functions. The TSM constructor
functions include those functions required to instantiate the sensor model and prepare it
to respond to inputs from the SET. While the TSM geopositioning functions perform the
image to ground and ground to image transformations. Associated functions support
these transformations and provide additional information used by the SET to perform its
exploitation functions. The TSM provides a list of specific parameters, their values and
uncertainties (variances and covariances) and a means for adjusting these parameters
to obtain more accurate solutions. The TSM also integrates information regarding the
time of collection and the trajectory.

Above the API, the SET understands the local environment and performs data handling
functions (i.e. opens/closes files, opens/closes data streams, etc.). The SET uses the
TSM constructor functions to create the required TSM. And the SET exercises the
transformation functions between the ground and image spaces to exploit the imagery.
The SET can also use this information to perform other sensor independent functions
such as mensuration, registration, feature extraction, etc. Using the associated TSM
functions, the SET adjusts selected TSM parameters to obtain a more accurate solution.

Furthermore, the SET performs sensor model management functions as required. The
SET also selects the appropriate TSM if more than one model is available for the
imagery data in use.

Note that there may be multiple TSMs for the same sensor image; therefore the TSM
must provide sufficient information to allow the SET or its user to select the most
appropriate model.

 10

5 SPECIFIC REQUIREMENTS

5.1 Coordinate Systems

5.1.1 Image Coordinate System

Any point in an image can be described by two coordinates, the line (or row) and the
sample (or column). The origin of the coordinate system is taken to be at the upper left
corner of the upper left pixel. The line coordinate is positive in the downward direction
on the image, and the sample coordinate is positive to the right. The pixel at the origin
will have the coordinates of (0,0).

Image coordinates are measured in units of pixels. Only coordinates referenced to the
full image resolution are used in the Sensor Model interface.

The image coordinates at the center of any pixel will have a fractional part of 0.5. (See
Figure 2)

(0.0, 0.0) (0.0, 1.0) (0.0, 6.0)

(0.5, 0.5)

(1.0, 0.0)

(4.0, 0.0)

(2.5, 3.5)

(0.0, 0.0) (0.0, 1.0) (0.0, 6.0)

(0.5, 0.5)

(1.0, 0.0)

(4.0, 0.0)

(2.5, 3.5)

Figure 2 - Image Coordinate System

 11

5.1.2 Ground Coordinate System

The API shall use a rectangular coordinate system referenced to the Earth Centered
Earth Fixed (ECEF) coordinate frame referenced to WGS-84. All lengths are measured
in meters.

5.2 Adjustable Sensor Model Parameters

Each sensor model contains two versions of the adjustable parameter information (See
Figure 3). The original set of these parameters contains the values that characterize the
original image acquisition. The current set of sensor model parameters contains the
values that are used to perform all photogrammetric computations and may be altered
by the application.

Sensor Model Parameters

Numbers of
Parameters

Original
Parameters

Parameter
Names

Current
Parameters

Parameter
Types

Original
Parameter

Values

Original
Parameter
Covariance

Current
Parameter

Values

Current
Parameter
Covariance

Sensor Model Parameters

Numbers of
Parameters

Original
Parameters

Parameter
Names

Current
Parameters

Parameter
Types

Original
Parameter

Values

Original
Parameter
Covariance

Current
Parameter

Values

Current
Parameter
Covariance

Sensor model parameters refer to those parameters that need to be set in order to run
the image-to-ground and ground-to-image functionality of the sensor model. Two
values, original and current, are stored (maintained in local memory) for each sensor
model parameter. The current value can be updated to the best estimate of the
parameter value. The original value is usually derived from support data, in which case
it cannot be changed. A covariance matrix is associated with the original parameter
values. A second covariance matrix is associated with the current parameter values.
Each of these two covariance matrices contains entries for every pair of parameters.
The current covariance matrix elements are sufficient to compute rigorous error
estimates for the parameters.

5.3 Proximate Imaging Locus / Remote Imaging Locus

There is a one-to-one mapping going from ground space to image space. However,
going from image to ground space the mapping is one to many. Each pixel in image
space corresponds to a line of sight that traverses a set of ground points. That set of
ground points is termed the imaging locus. The imaging locus is useful in a variety of

Figure 3 - Sensor Model Parameter Components

 12

photogrammetric operations. For example, an image-to-ground calculation can be made
by finding the intersection of the imaging locus with a ground surface.

In general, the imaging locus is a complicated path due to the effects of physical
phenomena. Therefore, the sensor models return an approximation to the imaging locus
termed the proximate imaging locus. The proximate imaging locus consists of a point on
the locus together with the direction of the locus at that point. In effect, the proximate
imaging locus at a given ground point is the line tangent to the imaging locus at that
point. Any arbitrary imaging locus can then be approximated using multiple proximate
imaging loci.

True Imaging Locus

Remote Imaging Locus
Sensor

Proximate Imaging Locus

Earth

For optical imagery, the imaging locus follows the line of sight from the camera to the
ground. Figure 4 depicts the imaging locus for optical imagery. The effects of refraction
on the line of sight are greatly exaggerated in this picture. For SAR imagery, the
imaging locus follows the curve of intersection of a constant range sphere with the
Doppler cone and also includes the effects of refraction.

In cases where a ground point is not available to compute the proximate imaging locus,
a remote imaging locus can be obtained. The remote imaging locus is the line of sight
approximated by a straight line. The complicated effects of physical phenomena are
ignored. This gives a good approximation of the actual imaging locus and can be used
to obtain ground points at which a proximate imaging locus can be computed.

5.4 Desired Precision / Achieved Precision

Desired precision and achieved precision are measures of the precision of implicit
(iterative) algorithms. Explicit algorithms find a precise answer for a given input, while
implicit algorithms often require some iterative technique in order to produce the desired
output. The resulting precision is a trade-off with speed: a more precise result requires
additional iterations.

Figure 4 - Imaging locus for Optical Imagery

 13

Desired precision is an input to functions that request the result to be within a certain
range of the exact value, whether it is in pixels, meters, or some other measure. It has
also been referred to as a convergence tolerance.

Achieved precision is an output of functions that accept desired precision as their input.
It is the precision that is actually obtained by the algorithm. The intent is to obtain a
value equal to or less than the desired precision value.

It is important not to confuse precision with accuracy. “Accuracy” is defined as the
degree to which a value may be in error. “Precision” is defined as the resolution or
granularity (i.e., number of decimal places, for instance) in which the value is reported.
Thus, if a value is accurate to +1 unit of measure, precision to multiple decimal palces
may be of limited usefulness. Accuracy (i.e., error uncertainty) is represented using
covariance matrices for certain TSM API methods.

5.5 Sensor Model State

The state of a sensor model is the set of data containing the information required to
complete the sensor modeling functions. The sensor model state data must be sufficient
for defining a complete and operable sensor model. This includes all unadjustable
parameters (such as mode), adjustable parameters (both original and current), and all
covariance (both original and current). See paragraph 5.12.29 for more detailed
description.

A TSM can only produce a sensor model from a saved state if that saved state was
produced by it.

The content of the data is not specified by this document and is the responsibility of the
creator of the sensor model. The transfer of the state data from the SET to the TSM and
from the TSM to the SET is specified as a byte stream.

5.6 Sensor Model Naming Convention

The name of a CSM library must uniquely identify it. The Sensor Model files shall be
named by concatenating the platform name or abbreviation (e.g.
GLOBAL_HAWK_RQ4A), the specific sensing device identifier (e.g. SAR), the
development contractor name (e.g., HARRIS), the version release number (see 5.10.15
TSMPlugin::getSensorModelVersion), the computing platform operating system (e.g.
solaris7), a CSM version number followed by a decimal point and the appropriate
extension (e.g. dll, so1). Each of the concatenated fields before the decimal point shall
be separated by an underscore. Only the sensor name, the decimal point separator and
the extension are required, but enough optional fields will be used to completely identify
the CSM. Examples of file names:

GlobalHawk_SAR_Harris_2_solaris9gcc_tsm31.so
GlobalHawk_SAR_Harris_2_solaris9sun_tsm31.so

 14

GlobalHawk_SAR_Harris_2_win2k_tsm31.dll

5.7 Environment Variables

The TSM shall identify and document environment variables within the installation
instructions.

5.8 Conventions used in Describing Functions (Methods)

Each public function of the top-level interface to the Sensor Models is individually
described in the next sections. For each function, the following items are described:

NAME The full function name including the class it is found in.

Function names begin with lower case.
Constants are denoted with all capitalized characters.

SYNOPSIS The function prototype as it would be seen in the C++ code.

Code fragments are displayed in a courier font.

DESCRIPTION The function and each function parameter are described.

INPUTS The inputs to the function, if any, are described.

OUTPUTS The function’s outputs upon successful completion, if any, are

described.

ERRORS & WARNINGS Any known conditions that cause an error to be raised or a

warning to be issued are identified.

NOTES Other text used to amplify the understanding of this function

SEE ALSO Related functions are listed.

 15

5.9 TSMPlugin Class

The TSMPlugin class encapsulates all of the functionality contained within a single
TSM plugin. These capabilities include providing applications with the ability to describe
plugins, select sensor models, process image support data, and create sensor models.
The plugin descriptor functions provide applications with information that is associated
with the entire associated plugin. Sensor model availability functions identify the sensor
models that are supported by the associated plugin. Sensor model descriptor functions
provide characteristics that are associated with an entire given sensor model type.
Image support data conversions take given image support data and provide sensor
model state results. Sensor model constructors produce sensor models of the given
sensor model type. The resultant sensor models support a wide variety of capabilities
required to exploit the imaging geometry associated with a particular image.

The TSMPlugin class is an abstract base class. It uses sensor model state strings, and
is dependent upon the following externally defined classes: tsmError, tsmWarning,
tsm_ISD, and TSMSensorModel.

Here is the TSMPlugin class object definition:

5.9.1 TSMPlugin Class Object Definition

The code for the TSMPlugin class is listed in section 6.1.

5.9.2 Plugin Physical Requirements

TSM plugins are always provided in a form that can be distributed to potential users and
installed in applications that require sensor models. Each plugin takes the form of a
runtime linkable library that can be incorporated and by applications at runtime.

5.9.2.1 General Format

Each plugin is deployed as a runtime link library in a single file. The format of that file is
dependent upon the operational environment where the plugin is to be used. The
following table identifies both the physical formats and the filename suffix associated
with the possible operational environments.

Environment Physical Format Filename Suffix
(Extension)

ELF 32-bit MSB dynamic link
library, for SPARC, version 1 Sun (SPARC) /

Solaris ELF 64-bit MSB dynamic link
library, for SPARC, version 1

.so

Silicon Graphics
(MIPS) / IRIX

ELF N32 MSB mips-3 dynamic
link library, for MIPS, version 1 .so

 16

ELF N64 MSB mips-3 dynamic
link library, for MIPS, version 1
ELF 32-bit LSB shared object,
Intel 80386, version 1

PC / Linux
ELF 64-bit LSB shared object,
Intel 80386, version 1

.so

32-bit segmented executable
dynamic link library (DLL) for
Release and with Multi-
threading (/MD)

PC / Windows
64-bit segmented executable
dynamic link library (DLL) for
Release and with Multi-
threading (/MD)1

.DLL

Although a plugin may be stored on any system, it will operate only in the prescribed
environment.

5.9.2.2 Internal Structure

Each plugin contains the elements necessary to implement one or more sensor models.
This includes TSM plugin interface software, sensor model construction support, and
sensor model operations software.

5.9.2.3 External Dependencies

Because each plugin contains an implementation of a derived tsmPlugin class, all
plugins are dependent upon the identical implementation of the tsmPlugin base class
(as specified in section 5.9.1). The tsmPlugin base class implementation is not
provided in a TSM plugin, but must be provided by a plugin-using application. As a
result, compatibility among plugins is regulated by the tsmPlugin base class
implementation.

Generally, runtime link libraries are capable of identifying other runtime link libraries that
are needed for proper operation. Because the names and capabilities that are
potentially provided by these plugin-external libraries cannot be effectively controlled,
each plugin may not contain any dependencies upon any software not already included
in the plugin or the plugin-using application. As a result, the external software available
to a plugin for use must either come as a direct result of the TSM plugin interface or the
compiler environment (see section Appendix C Compiling) that is common to both the
application and the plugins.

Plugin operating environments are expected to provide a variety of features that could
cause problems for proper plugin operation. The use of these features is prohibited.
Problem features include file access (particularly with shared files), environment
variables, and various operating system controls.

 17

A TSM plugin must be self contained and not dependent upon other objects (that cannot
be controlled) — compatibility and proper operation require it.

5.9.3 Sensor Model Selection and Construction

5.9.3.1 Sensor Model Construction

A sensor model is generally constructed for a particular image. The information
necessary to perform that construction is contained within the image support data
associated with an image. This support data can either be in the form of an Image
Support Data (ISD) structure, or it can be in string form known as sensor model state
data. Reference the externally defined class tsm_ISD for a definition and description of
the ISD structure. The sensor model state defines a single image geometry in a single
form specific to a particular image. Note that image support data is suitable for storage
or transfer as needed, while the sensor model produced from this data is not.
The overall sensor model construction process will involve two types of activities: 1)
sensor model selection and 2) sensor model construction. These activities could be
done in series or they may overlap. The details of sensor model selection are
discussed further in the following section, while the remainder of this section will be
devoted to sensor model construction.
There are two ways to construct a sensor model. First, an application may construct a
sensor model using image support data that has been prepared by the application to be
in the form specified by the tsm_ISD class. In this case, the application calls the
TSMPlugin method constructSensorModelFromISD, providing a pointer to the
tsm_ISD structure as an input. Prior to making this call, the application should first
determine which plugin can produce a model from the given ISD. The section “Sensor
Model Selection” addresses how to determine this.
The second way to create a sensor model is through the use of a sensor model state.
The state can be obtained by calling the TSMPlugin method
convertISDToSensorModelState. Then, this state can be used to create a sensor
model by calling the TSMPlugin method constructSensorModelFromState.
Again, as in the previous method, the application will need to determine which plugin
can convert the ISD into a valid state as part of this process. The section “Sensor
Model Selection” addresses how to do this. It is useful to mention at this point that
since the state data can be transferred and stored, it can be saved and then used at a
later time to create a sensor model that will be valid to perform sensor modeling
operations on the original image.
In summary, a sensor model can be constructed in one of two ways: (1) using the image
support data (ISD) as defined by the tsm_ISD class; and (2) using a sensor model
state. The second method can be used to create a sensor model from a state that has
been generated previously and stored to disk.

 18

5.9.3.2 Sensor Model Selection

Selection of sensor models can take place at several points in the sensor model
construction process. Selection can be made with respect to which ISD conversions will
be exercised. Additionally, sensor model selection can be applied after ISD conversion
has resulted in a sensor model state to control the sensor model constructions that are
performed. Functions are provided to identify which plug-ins can construct a sensor
model from either an ISD or a state. Sensor model selection can even extend to the
selection among multiple sensor model objects that are produced. The TSMPlugin
class provides some of the criteria that can be applied such as plug-in manufacturer,
plugin release date, and sensor model version. Instantiated sensor models support
additional criteria such as expected uncertainty and processing speed.
Note: Although expected uncertainty is directly available from the instantiated sensor
model, processing speed is not a predefined metric that is directly available. If speed is
needed by the application, as a selection criterion, then the application must devise its
own way of measuring speed using the model. For example, the application might call
the same method a number of times and measure the total elapsed time, or the
application might make a sequence of related calls and measure the time for the
sequence.

In addition to providing selection criteria, the TSMPlugin class also provides some
shortcut functions that can be used to assess whether or not a particular ISD conversion
or sensor model construction can be performed. Although these functions cannot be
relied upon to provide definitive answers, they can quickly identify impossible
alternatives and assist in the refinement of the possibilities.

5.9.4 Adding and Removing Plugins

The TSMPlugin interface is designed such that derived classes will be plug-and-play.
Specifically, this means that TSM plugins can be added and removed from the system
configuration very easily without the need to recompile or re-link any source code. Of
course, applications will first need to be integrated with the TSMPlugin base class.
Once this has been done, TSMPlugin sensor models can be added or removed without
recompiling code, allowing sensor model addition and removal to be easily
accomplished “in the field”.

At this point, it is useful to mention that TSM plugins may be added and removed from a
system either while the system is running or while it is not running.

5.9.4.1 Adding and Removing TSMPlugins from an Application Configuration

This section addresses the simple case where plugins are added and removed while
the application is not running, as this may likely be a common scenario. The section to
follow discusses adding and removing plugins while the application is running.

The application software looks for dynamically link libraries in certain places. It can look
in a centralized location for all TSMPlugin libraries, or it can look in several pre-set

 19

directories. For the purpose of this specification, the “plugin directory” will be known as
the location in which the application software looks for libraries to load, keeping in mind
that this might refer to multiple directories. To add a TSMPlugin sensor model, the
library for that model will need to be placed in the “plugin directory”. The next time the
application starts up, the new plugin will be included in the list of available plugins
owned by the TSMPlugin base class and will be available for use by the application.
See section 5.9.5 for a more detailed explanation of how plugins get added to the base
class list.

To remove a TSM plugin while the application software is not running, the library for that
plugin simply needs to be removed from the “plugin directory”.

Applications will typically load shared libraries among the first processing tasks that they
perform when they first startup. Therefore, any new plugins added to the application
configuration will be available for use the next time that the application software is
started. Likewise, any plugins that have been removed from the “plugin directory” will
not be available.

5.9.4.2 Adding and Removing TSMPlugins while the Application is Running

As previously described, it will be typical for applications to be designed such that
TSMPlugin sensor models are added and removed while the application is not running,
such that changes take effect the next time that the application software is started.
However, this does not need to be the case. Some applications may need to remain
operational for long periods of time, during which “plugin maintenance” including
addition and removal of plugins might be necessary. The TSMPlugin class supports
this requirement.

If desired, an application could load new plugin libraries at any time while the application
is running. How this is done is left to the application developer. (In other words, the
application developer is responsible for providing a means by which the application
becomes aware of the new library. This can be through automatic detection of changes
in the “plugin directory”, or a GUI menu allowing an operator to identify the new plugin.)
Regardless of the method, whenever an application loads a TSMPlugin Library, the
plugin derived class will automatically register itself with the TSMPlugin base class (i.e.,
add itself to the list of available TSM plugins contained in the base class). No explicit
method calls are required by the application other than to load the new TSMPlugin
library.

However, removing a TSMPlugin from the system while the application is running is
more complicated. Within the context of this document, plugin removal will be called
“expulsion”. Expelling a plugin will involve removing the plugin from the base class list,
as well as closing the library associated with that plugin. After the library has been
closed, it should be removed from the plugin directory if it is not desired for use the next
time that the application starts and/or loads libraries.

 20

Application developers are cautioned regarding the need to make sure that all
processes dependent on the candidate library are ended before the library is closed.
Furthermore, applications will need to keep track of which library is associated with
each plugin in order to make sure that the correct library is closed when a plugin is to be
removed.

5.9.5 Explanation of “Plugin Registration”

The TSMPlugin base class owns a list of all derived sensor model plugins that are
currently installed and available for image processing. In actuality, this list is a list of
pointers to the factory classes for the respective derived plugins. Client software can
access this list of pointers through the TSMPlugin::getList()function.

Registration is the process whereby derived plugins get added to the base class list.
The TSMPlugin base class provides a mechanism allowing derived plugins to “self-
register” with the base class, thereby adding themselves to the base class list. This
mechanism is described below.

The TSMPlugin base class (see header file TSMPlugin.h) has the constructor
TSMPlugin::TSMPlugin() that can only be called by objects that derive from the base
class. This constructor adds the calling object’s pointer to a list of known derived type
plugins, as follows:

tsmPlugin::tsmPlugin()
{
 if (!theList)
 {
 theList = new tsmPluginList;
 }

 if (theList)
 {
 theList->push_back(this);
 }
}

Derived plugins must contain a static instance of themselves (i.e., a static instance of
the derived type plugin). The effect of having the static instance is that when the
runtime library gets loaded by the application, the static instance gets initialized
resulting in the base class constructor adding the derived plugin to its list. For example,
a plugin for a notional derived type called “Fun Sensor Model” would include the
following:

5.9.6 Application Developer Responsibilities

5.9.6.1 Functionality Expected within the Application

The application software is responsible for providing the following functionality:

 21

• Loading TSMPlugin library files

• Providing image support data to the sensor model selection and construction
functions. A tsm_ISD class object is provided when processing an image from
native file format or when a sensor model state is not avaialbe.

Note that the following convention should be observed by the Application when
constructing tsm_ISD objects. The Application should create ISD standard forms
such as NITF 2.0 or 2.1, if possible. The next preferred form is BYTESTREAM,
followed by FILENAME. Some plug-ins may not support file access operations.

• Providing a sensor model state to the sensor model selection and functions.

• Selecting among multiple possible sensor models (either before construction or
after) using the sensor model selection and construction methods provided by the
TSMPlugin class

• If the application has the requirement to be able to expel a TSMPlugin while the
application is running, then the application is responsible for tracking which
TSMPlugin library is associated with each sensor model plugin by associating the
library file handle with the unique TSMPlugin name string.

• The TSMPlugin class can be used in applications that are single threaded or
multithreaded. However, in multithreaded cases the application is responsible for
using the methods defined within the TSMPlugin class in such a way that provides
the desired degree of thread safety. With the exception of mutually exclusive
(mutex) locks that are used within some functions (see implementation of
removePlugin(), for example), no thread safety mechanisms have been built into the
TSMPlugin class. The functions within the TSMPlugin class having the internal
mutex lock are so noted in the "Notes" section of the applicable method definitions in
Section 5.10.

5.9.6.2 Compiling and Linking with the TSMPlugin Base Class

Supported Platforms and Environments
The TSMPlugin class has been designed not to rely on code that would cause it to be
platform, operating system, or compiler dependent, or to require special compile time
options. As a result, the TSMPlugin class can be used on any combination of platform,
operating system, or compiler environment provided that a standard, fully compliant
C++ compiler is used.
General Instructions for Compiling and Linking
The TSMPlugin base class is provided as source code files TSMPlugin.cpp and
TSMPlugin.h (see Appendix D Example CPP Filesand Appendix A Header Files). The
application developer will need to compile this code into a shared library and then link
with the library in order to incorporate the TSMPlugin base class functionality into the
application, and in order for the application to use TSMPlugin derived classes. For

 22

clarification, example makefiles are provided in Appendix C Compiling for both the Unix
and Windows/PC environments. These examples were written for the Sun Forte C++
and GNU C++ compilers in the Unix case and for the Visual C++ compiler in the
Windows/PC case.
Compile Time Dependencies
In addition to linking with the TSMPlugin shared library as described above, applications
are also required to link with the following library for proper operation of the TSMPlugin
class for the respective environments:

Unix Windows/PC

libdl.so Multi-threading and
Dynamic Linking

(/MD)

The Windows operating systems require that the main program and all dynamic link
libraries (dll’s) be compiled as either Release or Debug not a mixture of both. It is a
project requirement that all sensor model dll’s be delivered as a release. All integrator
testing will be done with release libraries.
The second requirement is that the model libraries be compiled with the Multi-threading
switch enabled (/MD). See the project files included with the VTS distribution for
examples.
The third requirement, which is driven by Windows library conventions, is that the TSM
library be built with a standard name. This is because the name of the TSM library is
stored in the sensor model library. This uniform name is TSMAPI.dll.

5.9.7 Plugin Developer Responsibilities

5.9.7.1 TSMPlugin Naming

All TSMPlugin derived classes will need to have a name that is unique among all
TSMPlugin sensor models. If the plugin name is not specified within contractual
documentation, then the plugin developer shall coordinate with the procuring
government office to obtain the name for the plugin. This name shall be a null-
terminated ASCII character string consisting of only the following characters: the digits
‘0’ through ‘9’, the letters ‘A’ through ‘Z’ (upper case only), and the underscore ‘_’.

5.9.7.2 TSMSensorModelName Naming

All TSMSensorModel derived classes will need to have a name that is unique among all
TSM sensor models. Since a TSM plugin may be capable of creating more than one
sensor model, each sensor model type that can be created must have its own name.
This name not only must be unique within the models produced by that plugin, but it
must also be unique across all models produced by all other TSM plugins. If sensor

 23

model name strings are not specified within contractual documentation, then the plugin
developer shall coordinate with the procuring government office to obtain the names to
be used for all sensor models that can be created by the TSM plugin. These names
shall be a null-terminated ASCII character string consisting of only the following
characters: the digits ‘0’ through ‘9’, the letters ‘A’ through ‘Z’ (upper case only), and the
underscore ‘_’. .

5.9.7.3 TSMPlugin Manufacturer Name

All TSMPlugin derived classes will need to have a manufacturer name string that
uniquely identifies the manufacturer of the plugin. For proper operation, this string must
be unique for each organization that produces commmunity sensor models. If the
manufacturer name string is not specified by contractual documentation, then the plugin
developer shall contact the procuring government office to coordinate this string.

The TSMPlugin manufacturer name shall be a null-terminated ASCII character string
consisting of only the following characters: the digits ‘0’ through ‘9’, the letters ‘A’
through ‘Z’ (upper case only) and the underscore ‘_’. .

5.9.7.4 Plug-In Supporting Classes Naming

All supporting classes for the plugin will need to have names that are unique among all
TSMPlugin plugins to avoid name collisions with other plugins as well as with the SET.
A recommended method for supporting this is to require the plugin to use its own C++
namespace.

namespace CSM_PLUGIN_UNIQUE_NAMESPACE

{

 class support_class_1_for_csm_plugin { … }

}

If the plugin’s namespace is not specified within contractual documentation, then the
plugin developer shall coordinate with the procuring government office to obtain the
name for the plugin’s namespace. This name shall be a null-terminated ASCII
character string consisting of only the following characters: the digits ‘0’ through ‘9’, the
letters ‘A’ through ‘Z’ (upper case only), and the underscore ‘_’.

5.9.8 Functionality Required within the Plugin

The TSMPlugin derived class is responsible for providing the following functionality:

 24

5.9.8.1 Implementation of TSMPlugin Class Pure Virtual Methods

The TSMPlugin derived class must provide an implementation for all functions defined
as virtual by the TSMPlugin base class.

5.9.8.2 Static Instance of Own Type

The derived class must contain a static instance of its own type. This static instance will
get initialized when the derived library is loaded by the application, resulting in the base
class constructor being called thereby adding this derived class to the base class list.

5.9.8.3 Win32 Export Code

The plugin developer must include the following code in the header for the derived
class, except with the real TSM plugin name described by paragraph 5.9.7.1 inserted in
place of ‘PLUGIN_NAME’ below. The symbol defined from this code should be used
accordingly when writing the derived class header. See the additional background
discussion provided in Appendix B Additional Explanation of Export Symbols.
This code is required for the proper operation of TSMPlugin class in Windows/PC
environments. This declaration is part of the TSMMisc.h file so it will be included in
every class.

 #ifdef _WIN32
 # ifdef PLUGIN_NAME_LIBRARY
 # define PLUGIN_NAME_EXPORT_API __declspec(dllexport)
 # else
 # define PLUGIN_NAME_EXPORT_API __declspec(dllimport)
 # endif
 #else
 # define SENSOR_MODEL_NAME_EXPORT_API
 #endif

 25

5.10 Detailed Plug-in Method Descriptions

The following pages provide detailed information about each method provided by the
TSMPlugin class.

 26

NAME

5.10.1 TSMPlugin::getList();

SYNOPSIS

static TSMWarning* getList(
 TSMPluginList*& aTSMPluginList)
 throw (TSMError);

DESCRIPTION
The getList() method provides access to the list of all TSMPlugin derived classes
that are currently registered with the base class.

INPUTS
None

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

aTSMPluginList is a reference to a list of pointers to all TSMPlugin derived classes
that have registered with the base class. This list can be used to access the
implementations to TSMPlugin base class virtual methods that have been implemented
by derived classes.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.

− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

 27

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.
NOTES
This method should be ignored by plugins; it is meant for applications to access all
loaded plugins.
The list returned by the method is private data and the application should not attempt to
alter (add/remove items) the list.

SEE ALSO

 28

NAME

5.10.2 TSMPlugin::findPlugin();

SYNOPSIS

static TSMWarning* findPlugin(
 const std::string& pluginName,
 TSMPlugin*& aTSMPlugin)

 throw (TSMError);

DESCRIPTION

The findPlugin method is a convenience function that accepts a TSM Plugin Name
as defined by paragraph 5.9 and 5.9.7.1 of this document and returns a pointer to the
TSMPlugin derived class that has that string as its name.

INPUTS

pluginName is a ACSII character string that uniquely identifies a TSMPlugin.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

aTSMPlugin a pointer to the TSMPlugin derived class.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

 29

Use this error if no other error is suitable. Its use is discouraged.

NOTES
The TSMPlugin class can be used in applications that are single threaded or
multithreaded. However, in multithreaded cases the application is responsible for using
the methods defined within the TSMPlugin class in such a way that provides the desired
degree of thread safety. With the exception of mutually exclusive (mutex) locks that are
used within some functions (see implementation of removePlugin(), for example), no
thread safety mechanisms have been built into the TSMPlugin class.
The list returned by the method is private data and the application should not attempt to
alter (add/remove items) the list.

SEE ALSO
TSMPlugin::removePlugin()

 30

NAME

5.10.3 TSMPlugin::removePlugin();

SYNOPSIS

static TSMWarning* removePlugin(
 const std::string pluginName)

 throw (TSMError);

DESCRIPTION
This method searches the list of pointers to available TSM plugin derived classes and
removes the pointer corresponding to the derived class whose name is equal to
pluginName.

INPUTS

pluginName is a null-terminated ACSII character string that uniquely identifies a
TSMPlugin derived class, as defined by 5.9 and 5.9.7.1.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 31

NOTES
The TSMPlugin class can be used in applications that are single threaded or
multithreaded. However, in multithreaded cases the application is responsible for using
the methods defined within the TSMPlugin class in such a way that provides the desired
degree of thread safety. With the exception of mutually exclusive (mutex) locks that are
used within some functions (see implementation of removePlugin(), for example), no
thread safety mechanisms have been built into the TSMPlugin class.

SEE ALSO
TSMPlugin::findPlugin()

 32

NAME

5.10.4 TSMPlugin::canISDBeConvertedToSensorModelState()

SYNOPSIS

virtual TSMWarning* canISDBeConvertedToSensorModelState(

 const tsm_ISD& image_support_data,
 const std::string& sensor_model_name,
 bool& convertible)
 const throw (TSMError) = 0;

DESCRIPTION

The canISDBeConvertedToSensorModelState() indicates whether or not given
image support data can be converted into a sensor model state for the given sensor
model by the associated TSM plugin.

INPUTS

image_support_data is a reference to the image support data that provides the
source for a potential conversion.

sensor_model_name is a null-terminated ASCII character string that identifies one of
the sensor models within the plugin.
Pointers to the functional outputs are also provided.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

convertible is a boolean integer that indicates whether or not the identified sensor
model state can be produced using the given image support data. A return of “false”
indicates that the sensor model state for the given sensor model is definitely not
producible and a return of “true” indicates that the sensor model state for the given
sensor model is potentially producible with the associated TSM plugin.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS

 33

All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES
This function does not definitively indicate whether or not the associated plugin can be
used for the production of usable sensor model state from the given image support
data. Definitive results may be obtained using
TSMPlugin::convertISDToSensorModelState().

SEE ALSO
TSMPlugin::convertISDToSensorModelState()

 34

NAME

5.10.5 TSMPlugin::canSensorModelBeConstructedFromState()

SYNOPSIS

virtual TSMWarning* canSensorModelBeConstructedFromState(

 const std::string& sensor_model_name,
 const std::string& sensor_model_state,
 bool& constructible)
 const throw (TSMError) = 0;

DESCRIPTION

The canSensorModelBeConstructedFromState() indicates whether or not a
given sensor model can be constructed by the associated TSM plugin.

INPUTS

sensor_model_name is a null-terminated ASCII character string that identifies one of
the sensor models within the plugin.

sensor_model_state is a null-terminated ASCII character string that contains the
sensor model state data for one of the sensor models supported by the associated TSM
plugin.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

constructible is a boolean integer that indicates whether or not the associated
sensor model is constructible. A return of “False” indicates that the given sensor model
is definitely not constructible and a return of “True” indicates that the given sensor
model is potentially constructible with the associated TSM plugin.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.

 35

− Warnings:
UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES
This function does not definitively indicate whether or not the associated plugin can be
used for the construction of a usable sensor model with any sensor model state.
Definitive results may be obtained using
TSMPlugin::constructSensorModelFromState().

SEE ALSO
TSMPlugin::constructSensorModelFromState ()

 36

NAME

5.10.6 TSMPlugin::canSensorModelBeConstructedFromISD()

SYNOPSIS

virtual TSMWarning* canSensorModelBeConstructedFromISD (

 const tsm_ISD& image_support_data,
 const std::string& sensor_model_name,
 bool& constructible)
 const throw (TSMError) = 0;

DESCRIPTION

The canSensorModelBeConstructedFromISD() indicates whether or not given
image support data can be used to construct the sensor model specified by
sensor_model_name by the associated TSM plugin. Note that the calling application
must first get the number of models constructible by the associated plugin and also
retrieve their respective names.

INPUTS

image_support_data is a reference to the image support data that provides the
source for a potential conversion.

sensor_model_name is a null-terminated ASCII character string that identifies one of
the sensor models within the plugin.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

constructible is a boolean integer that indicates whether or not the identified sensor
model state can be produced using the given image support data. A return of “False”
indicates that the sensor model state for the given sensor model is definitely not
producible and a return of “True” indicates that the sensor model state for the given
sensor model is potentially producible with the associated TSM plugin.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

 37

ERRORS & WARNINGS
Errors and warnings documented in section 6.4, must be handled, but not all conditions
are errors for this method. Specifically, certain errors should not be used, as these will
return an exception to the SET when setting the constructible argument value to
false is the correct behavior. These errors are ISD_NOT_SUPPORTED,
SENSOR_MODEL_NOT_CONSTRUCTIBLE, SENSOR_MODEL_NOT_SUPPORTED, and
UNKNOWN_SUPPORT_DATA. Use of these errors remains appropriate for the
constructSensorModelFromISD() method.

The following lists of warnings and errors are reasonably likely to occur from this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES
Note that before calling this method, the calling application will probably first need to get
the number of sensor models constructible by the associated plugin, and then also get
each of their names. Then, this method would be called ‘N’ times, once for each sensor
model that could be built by the plugin.

SEE ALSO
TSMPlugin::getNSensorModels()

TSMPlugin::getSensorModelName()

TSMPlugin::convertISDToSensorModelState()

TSMPlugin::constructSensorModelFromISD()

 38

NAME

5.10.7 TSMPlugin::constructSensorModelFromState()

SYNOPSIS

virtual TSMWarning* constructSensorModelFromState(

 const std::string& sensor_model_state,
 TSMSensorModel*& sensor_model)
 const throw (TSMError) = 0;

DESCRIPTION

The constructSensorModelFromState() creates a sensor model object from the
given sensor model state.

INPUTS

sensor_model_state is a null-terminated ASCII character string that contains the
sensor model state data for one of the sensor models supported by the associated TSM
plugin.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

sensor_model is a pointer to a sensor model object pointer that can be used to
perform a variety of sensor modeling operations. Upon failure, a null pointer is returned.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

 39

Use this error if no other error is suitable. Its use is discouraged.
INVALID_SENSOR_MODEL_STATE:

The sensor model state provided is not recognizable.
SENSOR_MODEL_NOT_SUPPORTED:

A constructor for the given sensor model name is not available within the
associated TSM plugin.

SENSOR_MODEL_NOT_CONSTRUCTIBLE:

A constructor for the given sensor model is available, but is not able to
successfully create a sensor model object.

NOTES
None

SEE ALSO
TSMPlugin::canSensorModelBeConstructedFromState()

 40

NAME

5.10.8 TSMPlugin::constructSensorModelFromISD()

SYNOPSIS

virtual TSMWarning* constructSensorModelFromISD(

 const tsm_ISD& image_support_data,
 const std::string& sensor_model_name,
 TSMSensorModel*& sensor_model)
 const throw (TSMError) = 0;

DESCRIPTION

The constructSensorModelFromISD() creates a sensor model object from the
given image support data. The sensor_model_name is used to identify which sensor
model within the plugin is to be constructed.

INPUTS

image_support_data is a reference to the image support data that provides the
source for model construction.

sensor_model_name is a null-terminated ASCII character string that identifies one of
the sensor models within the plugin.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

sensor_model is a pointer to a sensor model object pointer that can be used to
perform a variety of sensor modeling operations. Upon failure, a null pointer is returned.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

 41

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.
ISD_NOT_SUPPORTED:

The sensor model support data provided is not supported by this plugin.
MEMORY:

The allocated state string is insufficient to hold the entire sensor model
state that would be produced by this function.

SENSOR_MODEL_NOT_SUPPORTED:

A constructor for the given sensor model name is not available within the
associated TSM plugin.

SENSOR_MODEL_NOT_CONSTRUCTIBLE:

A constructor for the given sensor model is available, but is not able to
successfully create a sensor model object.

NOTES
None

SEE ALSO
TSMPlugin::canSensorModelBeConstructedFromISD()

 42

NAME

5.10.9 TSMPlugin::convertISDToSensorModelState()

SYNOPSIS

virtual TSMWarning* convertISDToSensorModelState(

 const tsm_ISD& image_support_data,
 const std::string& sensor_model_name,
 std::string& sensor_model_state)
 const throw (TSMError) = 0;

DESCRIPTION

The convertISDToSensorModelState() converts the given image support data
into a sensor model state string for the given sensor model.

INPUTS

image_support_data is a reference to the image support data that provides the
source for the conversion to sensor model state.

sensor_model_name is a null-terminated ASCII character string that contains the
name of the sensor model associated with the desired sensor model state.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

sensor_model_state is a pointer to a ASCII character string that contains sensor
model state.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.

 43

− Errors:
UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.
SENSOR_MODEL_NOT_SUPPORTED:

An ISD conversion for the given sensor model is not available within the
associated TSM plugin.

ISD_NOT_CONVERTIBLE:

An ISD conversion for the given sensor model is available, but is not able
to successfully create a sensor model state.

MEMORY:

The allocated state string is insufficient to hold the entire sensor model
state that would be produced by this function.

NOTES

SEE ALSO
TSMPlugin::canISDBeConvertedToSensorModelState()

 44

NAME

5.10.10 TSMPlugin::getManufacturer()

SYNOPSIS

virtual TSMWarning* getManufacturer(

 std::string& manufacturer_name)
 const throw (TSMError) = 0;

DESCRIPTION

The getManufacturer() function provides the name of the manufacturer who built
the associated TSM plugin. The manufacturer name is copied to the location specified
by the given character pointer.

INPUTS
None

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

manufacturer_name is a null-terminated, human-readable, ASCII character string
constructed from only the following ASCII characters: the digits ‘0’ through ‘9’, the
letters ‘A’ through ‘Z’, and the underscore ‘_’. The manufacturer name is unique and
corresponding for each organization that produces sensor model plugins.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

 45

Use this error if no other error is suitable. Its use is discouraged.

NOTES
To ensure the uniqueness of manufacturer name (and proper plugin operation), the
manufacturer name must be managed across the procurements of all TSM plugins.

SEE ALSO
None

 46

NAME

5.10.11 TSMPlugin::getNSensorModels()

SYNOPSIS

virtual TSMWarning* getNSensorModels(

 int& n_sensor_models)
 const throw (TSMError) = 0;

DESCRIPTION

The getNSensorModels() function provides the number of sensor models available
in the associated TSM plugin.

INPUTS
None

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

n_sensor_models is the number of sensor models supported in the associated TSM
plugin.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 47

NOTES
Each sensor model corresponds to a single set of functional sensor model operations
and a single sensor model state form.

SEE ALSO
TSMPlugin::getSensorModelName()

 48

NAME

5.10.12 TSMPlugin::getReleaseDate()

SYNOPSIS

virtual TSMWarning* getReleaseDate(

 std::string& release_date)
 const throw (TSMError) = 0;

DESCRIPTION

The getReleaseDate() function provides the release date of the associated TSM
plugin. The release date is defined as the date on which the associated TSM plugin
completed the construction process that resulted in a deliverable implementation. The
release date is copied to the location specified by the given character pointer.

INPUTS
None

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

release_date is a null-terminated, ASCII character string of decimal digits in
compliance with ISO 8601. The release date string will have a length of exactly 8
characters (not including the terminating null character) and be of the form yyyymmdd
where yyyy is the year, mm is the month of the year, and dd is the day of the month.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

 49

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES
None

SEE ALSO
None

 50

NAME

5.10.13 TSMPlugin::getSensorModelName()

SYNOPSIS

virtual TSMWarning* getSensorModelName(

 const int& sensor_model_index,
 std::string& sensor_model_name)
 const throw (TSMError) = 0;

DESCRIPTION

The getSensorModelName() function provides a human readable name for the given
sensor model.

INPUTS

sensor_model_index is the identifying number of a sensor model. This index is a
nonnegative integer ranging from zero to one less than the number of sensor models
provided by the associated TSM plugin.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

sensor_model_name is a null-terminated, human-readable, ASCII character string
constructed from only the following ASCII characters: the digits ‘0’ through ‘9’, the
letters ‘A’ through ‘Z’, and the underscore ‘_’. The sensor model name is unique and
corresponding for each sensor model.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.

 51

− Errors:
UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.
SENSOR_MODEL_INDEX_OUT_OF_RANGE:

The sensor model index given does not correspond to a sensor model that
is supported by the associated plugin.

NOTES
Each sensor model corresponds to a single set of functional sensor model operations
and a single sensor model state form.
A sensor model name will be reported by a plugin if there is either an ISD conversion or
a sensor model constructor associated with the sensor model. It is not necessary that a
plugin contain both of these capabilities for a given sensor model.

SEE ALSO
TSMPlugin::getNSensorModels()

 52

NAME

5.10.14 TSMPlugin::getSensorModelNameFromSensorModelState()

SYNOPSIS

virtual TSMWarning* getSensorModelNameFromSensorModelState(

 const std::string& sensor_model_state,
 std::string& sensor_model_name)
 const throw (TSMError) = 0;

DESCRIPTION

The getSensorModelNameFromSensorModelState() extracts the name of the
sensor model associated with the given sensor model state.

INPUTS

sensor_model_state is a pointer to a ASCII character string that contains sensor
model state.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

sensor_model_name is a null-terminated ASCII character string that contains the
name of the sensor model associated with the given sensor model state.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.
ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 53

INVALID_SENSOR_MODEL_STATE:

The sensor model state provided is not recognizable.

NOTES
This function is common to all TSM plugins and does not vary according to the other
capabilities that are available within any plugin.

SEE ALSO
None

 54

NAME

5.10.15 TSMPlugin::getSensorModelVersion()

SYNOPSIS

virtual TSMWarning* getSensorModelVersion(

 const std::string& sensor_model_name,
 int& version)
 const throw (TSMError) = 0;

DESCRIPTION

The getSensorModelVersion() function provides the version number of the
associated sensor model software. This software includes an associated constructor
from sensor model state (TSMPlugin::constructSensorModel() for the
associated sensor model name) and all of the sensor model operations associated with
the given sensor model type (as defined for the TSMSensorModel associated with a
sensor model name). Version numbers always increase with time and always imply
backwards compatibility.

INPUTS

sensor_model_name is a ASCII character string that indicates the sensor model for
which the version is requested.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

version is a positive integer (strictly greater than zero) that indicates the version
number of the given sensor model.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

 55

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.
SENSOR_MODEL_NOT_SUPPORTED:

A version number for the given sensor model is not available within the
associated TSM plugin.

NOTES
None

SEE ALSO
TSMPlugin::constructSensorModel()

TSMSensorModel

 56

5.11 Image Support Data (ISD)

ISD is provided by the SET for the plugins to make state data and sensor models. ISD
is encapsulated in a C++ class for transfer through the TSM interface. ISD is passed as
a pointer to a simple ISD base class (for example, tsm_ISD *isd). The ISD base class is
defined as follows:

The code for the image support data is located in section 6.2.1.
Classes derived from the base class are used for specific ISD formats. The TSM API
includes ISD definitions for commonly used formats including

1. NITF 2.0
2. NITF 2.1
3. ISD passed as the name of a file holding ISD
4. ISD passed as an unspecified byte stream

In each case, some code is provided in the header file to facilitate memory
management. It is not the intention to provide any data processing in the ISD classes.

The ISD definition provided here is meant to expandable. Additional formats will be
defined, as needed. Any particular plugin may support a subset of these formats.

 57

5.11.1 NITF 2.0 ISD

SYNOPSIS

The code of the NITF 2.0 ISD is listed in section 6.2.3.

DESCRIPTION
This class is designed to hold the sections of an NITF 2.0 image file that may potentially
hold ISD. These include the fileheader, image subheader and tagged record extensions
(TRE). The TRE data may be byte data that is not NULL terminated. Therefore, it is held
as a char pointer with a length associated with it. Although the TRE class allows direct
access to data, it is strongly suggested that the set method be used to fill in the TRE
data.

Multiple images are set only when it is desired to produce one sensor model for the set
of images.

 58

5.11.2 NITF 2.1 ISD

SYNOPSIS

The code for NITF 2.1 ISD is listed in section 6.2.2.
DESCRIPTION
This class is designed to hold the sections of an NITF 2.1 image file that may potentially
hold ISD. These include the fileheader, image subheader and tagged record extensions
(TRE). The TRE data may be byte data that is not NULL terminated. Therefore, it is held
as a char pointer with a length associated with it. Although the TRE class allows direct
access to data, it is strongly suggested that the set method be used to fill in the TRE
data.

Multiple images are set only when it is desired to produce one sensor model for the set
of images.

 59

5.11.3 Filename ISD

SYNOPSIS

The code for Filename ISD is listed in section 6.2.5.
DESCRIPTION
This class is designed allow a string indicating the name of a file that contains ISD. The
field _filename should be set to the full path name of the file.

 60

5.11.4 Bytestream ISD

SYNOPSIS

The code for Bytestream ISD is listed in section 6.2.4.
DESCRIPTION
This class is designed to hold ISD in a string of unspecified format. The field _isd is set
with the ISD.

 61

5.12 Sensor Model Functions

The sensor model member functions operate upon tsmSensorModel objects. Table 4
gives a functional grouping of the various sensor model functions.

Group Description Methods Page

Core
Photogrammetry

These methods
provide the basic
photogrammetric
operations.

groundToImage

imageToGround

imageToProximateImagingLocus

imageToRemoteImagingLocus

63

66

69

71

Uncertainty
Propagation

These methods
provide for the
propagation of
photogrammetric
uncertainty.

ComputeGroundPartials

computeSensorPartials

getCurrentParameterCovariance

setCurrentParameterCovariance

getCovarianceModel

setOriginalParameterCovariance

getOriginalParameterCovariance

getUnmodeledError

getUnmodeledCrossCovariance

73

75

78

80

144

82

84

146

148

Time and
Trajectory

These methods
provide information
regarding imaging
time and trajectory
for real sensors.

getTrajectoryIdentifier

getReferenceDateAndTime

getImageTime

getSensorPosition

getSensorVelocity

84

88

90

92

94

Sensor Model
Parameters

These methods
provide information
regarding sensor
model parameters,
their adjustment,
and their associated
covariance.

setCurrentParameterValue

getCurrentParameterValue

getParameterName

getNumParameters

setOriginalParameterValue

getOriginalParameterValue

setParameterType

96

98

100

102

106

106

142

Table 4 - Sensor Model Functions

 62

Group Description Methods Page
getParameterType 108

Sensor Model
Information

These methods
provide basic
information about
the imaging
process, sensor
model type, and
area imaged.

getPedigree

getSensorModelName

getImageIdentifier

setImageIdentifier

getSensorIdentifier

getPlatformidentifier

getReferencePoint

setReferencePoint

getImageSize

getCollectionIdentifier

isParameterShareable

getParameterSharingCriteria

110

140

112

114

116

118

136

138

120

150

152

154

Sensor Model
State

These methods
create, set, or get
major portions of
sensor model state.

getSensorModelState

122

Monoscopic
Mensuration

These methods
provide support for
ground
measurements that
are made using only
a single image.

getValidAltitudeRange

getIlluminationDirection

124

126

Systematic Error
Correction

These methods
provide identification
and control of
systematic error
correction functions
within the model

getNumSystematicErrorCorrections

getSystenaticErrorCorrectionsName

setCurrentSystematicErrorCorrectio
nSwitch

getCurrentSystematicErrorCorrectio
nSwitch

128

130

132

134

 63

NAME

5.12.1 tsmSensorModel::groundToImage()

Two implementations of this method are provided. The first implementation performs
coordinate conversions only. The second provides for passing and returning accuracy
information associated with the image and ground coordinates. This method shall
include corrections for systematic errors as required by the Commmunity Sensor Model
Technical Requirements Document.

SYNOPSIS

virtual TSMWarning* groundToImage(
 const double& x,
 const double& y,
 const double& z,
 double& line,
 double& sample,
 double& achieved_precision,
 const double& desired_precision = 0.001)

 throw (TSMError) = 0;

virtual TSMWarning* groundToImage(
 const double& x,
 const double& y,
 const double& z,
 const double groundCovariance[9],
 double& line,
 double& sample,
 double imageCovariance[4],
 double& achieved_precision,
 const double& desired_precision = 0.001)

 throw (TSMError) = 0;

DESCRIPTION

The groundToImage() function converts x, y and z (meters) in ground space (ECEF)
to line and sample (pixels) in image space.

INPUTS

x, y, and z are ground coordinates in meters.

groundCovariance is an array of doubles consisting of the 3x3 covariance of the
passed in ground point.

 64

desired_precision (pixels) is the requested precision of the calculation. The default
is 0.001 pixels.

OUTPUTS

Upon successful completion, groundToImage() assigns values to line and sample. It
also returns the achieved_precision of the calculation in pixels.

The overloaded implementation taking covariance information in ground
(groundCovariance) additionally returns the image covariance
(imageCovariance).

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

line and sample are image coordinates in units of pixels.

imageCovariance is an array of doubles consisting of the 2x2 covariance of the
resultant image point.

achieved_precision is the precision, in pixels, to which the calculation is achieved.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

 The desired_precision is not met.
 Use this warning if no other warning is suitable. Its use is discouraged.

 IMAGE_COORD_OUT_OF_BOUNDS:

 The specified ground location is not found within the image.
Since many sensor models are capable of returning coordinates outside of the image,
this should only be a warning and not an error. This way the SET is responsible for
handling this situation appropriately.

− Errors:

 UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 65

NOTES
This method converts a ground coordinate to a line and sample in image space.

SEE ALSO
tsmSensorModel::imageToGround

 66

 NAME

5.12.2 tsmSensorModel::imageToGround()

Two implementations of this method are provided. The first implementation performs
coordinate conversions only. The second provides for passing and returning accuracy
information associated with the image and ground coordinates. This method shall
include corrections for systematic errors as required by the Commmunity Sensor Model
Technical Requirements Document.

SYNOPSIS

virtual TSMWarning* imageToGround(
 const double& line,
 const double& sample,
 const double& height,
 double& x,
 double& y,
 double& z,
 double& achieved_precision,
 const double& desired_precision = 0.001)

 throw (TSMError) = 0;

virtual TSMWarning* imageToGround(
 const double& line,
 const double& sample,
 const double imageCovariance[4],
 const double& height,
 const double& heightVariance,
 double& x,
 double& y,
 double& z,
 double groundCovariance[9],
 double& achieved_precision,
 const double& desired_precision = 0.001)

 throw (TSMError) = 0;

DESCRIPTION

The imageToGround() function computes the ground coordinates (x, y, and z) where
the imaging locus for the given line and sample (pixels) intersects the geodetic surface
defined by the height. The uncertainty in line and sample are assumed to be zero when
using an implementation that does not provide accuracy information. When using an
implementation providing accuracy information, the uncertainty in pixels is given in

 67

pixels squared and is passed in via a double array representing a 2 x 2 covariance
matrix (imageCovariance).

INPUTS

line and sample are image coordinates in units of pixels.

height (meters) is measured with respect to the WGS-84 ellipsoid. The uncertainty in
elevation is assumed to be zero when using an implementation that does not provide
accuracy information. When using an implementation providing accuracy information,
the uncertainty in meters squared is passed in via heightVariance.

imageCovariance is an array of doubles consisting of the 2x2 covariance of the
resultant image point.

heightVariance is a double representing the variance of the passed in height
measurement.

desired_precision (meters) is the requested precision of the calculation. The
default is 0.001 meters.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

x, y, and z are ground coordinates in units of meters.

groundCovariance is an array of doubles consisting of the 3x3 covariance of the
passed in ground point.

achieved_precision is the precision, in meters, that the calculation achieved.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
PRECISION_NOT_MET:

 The desired_precision is not met.
 IMAGE_COORD_OUT_OF_BOUNDS:

 68

 The specified pixel location (line, sample) does not represent a pixel within the image.
It is optional whether a sensor model implementation chooses to handle this condition
and attempt to return ground coordinates. SET applications are responsible for
handling this situation appropriately if the the SET implementation passes an off-image
pixel location into the imageToGround() method. If a sensor model implementation
elects not to support this condition, the INDEX_OUT_OF_RANGE error condition may
be returned instead of this warning.

NO_INTERSECTION:

The sensor model equations do not converge using the support data and the input
values. The sensor model has computed the closest point of intersection and returned
this value. For example, the sensor model may allow the height input to be variable and
compute the intersection using an alternate value. This implementation is optional. If a
sensor model elects not to implement this option, then the DATA_NOT_AVAILABLE
error condition should be returned rather than this warning.

− Errors:

DATA_NOT_AVAILABLE:

The imageToGround() calculation was not able to complete due to incomplete or invalid
image support data. The tactical image does not include all of the support data that the
sensor model needs, or the sensor model algorithms are unable to successfully
complete calculation using the support data and inputs provided.

INDEX_OUT_OF_RANGE:

If a sensor model implementation elects not to support off-image pixel locations as
inputs, this error may be returned when a SET application passes in an off-image pixel
location.

UNKNOWN_ERROR:

The imageToGround() calculation was not able to complete due to bad sensor model
data. This might indicate that the orientation data for an optical sensor model is in an
unphysical region. Use this error if no other error is suitable. Its use is discouraged.

NOTES
This function converts a given line and sample in image space to a ground point.

SEE ALSO
tsmSensorModel::groundToImage

 69

NAME

5.12.3 tsmSensorModel::imageToProximateImagingLocus()

SYNOPSIS

virtual TSMWarning* imageToProximateImagingLocus(
 const double& line,
 const double& sample,
 const double& x,
 const double& y,
 const double& z,
 double locus[6],
 double& achieved_precision,
 const double& desired_precision = 0.001)

 throw (TSMError) = 0;

DESCRIPTION

The imageToProximateImagingLocus() function computes a proximate imaging
locus, a vector approximation of the imaging locus for the given line and sample nearest
the given x, y and z. The precision of this calculation refers to the locus’s origin and
does not refer to the locus’s orientation. For an explanation of the proximate imaging
locus section, see paragraph 5.3. This method shall include corrections for systematic
errors as required by the Commmunity Sensor Model Technical Requirements
Document.

INPUTS

line and sample are image coordinates in units of pixels.

x, y, and z are ground coordinates, in meters, near which the locus will be computed.

locus is an array of six doubles: a position and a direction vector.

desired_precision (meters) is the precision used for groundToImage() calls, if
any, within the function. The default is 0.001 meters.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

Upon successful completion, the imageToProximateImagingLocus() function
returns locus as follows:

 70

locus[0] = position x locus[1] = position y locus[2] = position z

locus[3] = direction x locus[4] = direction y locus[5] = direction z

achieved_precision (meters) is the precision returned from the computation

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

 UNKNOWN_ERROR:

An embedded imageToGround() call was unable to complete due to bad
sensor model data.
Use this error if no other error is suitable. Its use is discouraged.

NOTES

The locus must be allocated by the calling function as an array of at least six doubles.

The proximate imaging locus is computed under the assumption that the ground
coordinate system is fixed to the Earth. This is important for SAR imagery since the
SAR imaging process is sensitive to the relative velocity of sensor and target parallel to
the line of sight. This means that the proximate imaging locus will be usable for finding
the ground coordinates of objects fixed with respect to the Earth.

SEE ALSO
tsmSensorModel::imageToRemoteImagingLocus

 71

NAME

5.12.4 tsmSensorModel::imageToRemoteImagingLocus()

SYNOPSIS

virtual TSMWarning* imageToRemoteImagingLocus(
 const double& line,
 const double& sample,
 double locus[6],
 double& achieved_precision,
 const double& desired_precision = 0.001)

 throw (TSMError) = 0;

The imageToRemoteImagingLocus() function computes locus, a vector
approximation of the imaging locus for the given line and sample. The precision of this
calculation refers only to the origin of the locus vector and does not refer to the locus’s
orientation. For an explanation of the remote imaging locus, see the section at the
beginning of this document. This method shall include corrections for systematic errors
as required by the Commmunity Sensor Model Technical Requirements Document.

INPUTS

line and sample are in units of pixels.

desired_precision (meters) is the precision used for groundToImage() calls, if
any, within the function. The default is 0.001 meters.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

locus is an array of six doubles: a position and a direction vector.

Upon successful completion, the imageToRemoteImagingLocus() function returns
locus as follows:

locus[0] = position x locus[1] = position y locus[2] = position z

locus[3] = direction x locus[4] = direction y locus[5] = direction z

achieved_precision (meters) is the precision returned from the computation

 72

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

 UNKNOWN_ERROR:

An embedded imageToGround() call was unable to complete due to
bad sensor model data.
Use this error if no other error is suitable. Its use is discouraged.

NOTES

The locus must be allocated by the calling function as an array of at least six doubles.

SEE ALSO
tsmSensorModel::imageToProximateImagingLocus

 73

NAME

5.12.5 tsmSensorModel::computeGroundPartials()

SYNOPSIS
virtual TSMWarning* computeGroundPartials(
 const double& x,
 const double& y,
 const double& z,
 double partials[6])

 throw (TSMError) = 0;

DESCRIPTION

The computeGroundPartials function calculates the partial derivatives (partials)
of image position (both line and sample) with respect to ground coordinates at the given
ground position x, y, z. This method shall include corrections for systematic errors as
required by the Commmunity Sensor Model Technical Requirements Document.

INPUTS

x, y, and z are ground coordinates in meters.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

Upon successful completion, computeGroundPartials() produces the partial
derivatives as follows:
partials[0] = line wrt x, partials[1] = line wrt y,
partials[2] = line wrt z, partials[3] = sample wrt x,
partials[4] = sample wrt y, partials[5] = sample wrt z.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

 74

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

 UNKNOWN_ERROR:

The partial derivatives cannot be computed due to problems in the
groundToImage() calculation.

Use this error if no other error is suitable. Its use is discouraged.
NOTES
This function calculates the partial derivatives of image position with respect to ground
space at the given ground position.

The partials array must be allocated by the calling function to hold at least six
doubles.

SEE ALSO

tsmSensorModel::computeSensorPartials, tsmSensorModel::groundToImage,
tsmSensorModel::imageToGround

 75

NAME

5.12.6 tsmSensorModel::computeSensorPartials()

SYNOPSIS
virtual TSMWarning* computeSensorPartials(
 const int& index,
 const double& x,
 const double& y,
 const double& z,
 double& line_partial,
 double& sample_partial,
 double& achieved_precision,
 const double& desired_precision = 0.001)

 throw (TSMError) = 0;

virtual TSM Warning* computeSensorPartials(
 const int& index,
 const double& line,
 const double& sample,
 const double& x,
 const double& y,
 const double& z,
 double& line_partial,
 double& sample_partial,
 double& achieved_precision,
 const double& desired_precision = 0.001)

 throw (TSMError) = 0;

DESCRIPTION

The computeSensorPartials() function calculates the partial derivatives of image
position (both line and sample) with respect to the given sensor parameter (index) at
the given ground position. This method shall include corrections for systematic errors
as required by the Commmunity Sensor Model Technical Requirements Document.

INPUTS

index selects the sensor parameter.

line and sample are in units of pixels.

x, y, and z are ground coordinates in meters.

 76

desired_precision (pixels) is the requested precision of the calculation. The default
is 0.001 pixels. The precision refers to the precision of calls to groundToImage()
made within this function.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

line_partial is set by the function to the partial of line with respect to the indexed
sensor parameter.

sample_partial is set by the function to the partial of line with respect to the
indexed sensor parameter.

achieved_precision is the precision, in pixels, to which the calculation is achieved.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

INDEX_OUT_OF_RANGE:

index is less than zero or greater than or equal to the value returned by
getNumParameters()

UNKNOWN_ERROR:

line_partial and sample_partial cannot be computed at the given
ground position due to problems in the groundToImage() calculation.

The parameter tweak is set too small for a numerical partial to be
calculated.
Use this error if no other error is suitable. Its use is discouraged.

NOTES

 77

The two versions of this function perform the same operation. The second one exists for
efficiency reasons.

Two versions of the function are provided. The first function,
computeSensorPartials(), takes in only necessary information. It performs
groundToImage() on the ground coordinate and then calls the second form of the
function with the obtained line and sample. If the calling function has already performed
groundToImage with the ground coordinate, it may call the second function directly
since it may be significantly faster than the first. The results are unpredictable if the line
and sample provided do not correspond to the result of calling groundToImage() with
the given ground position (x, y, and z).

See section 5.4 of this document for usage of desired_precision and
achieved_precision.

SEE ALSO

tsmSensorModel::computeGroundPartials, tsmSensorModel::groundToImage,
tsmSensorModel::imageToGround

 78

NAME

5.12.7 tsmSensorModel::getCurrentParameterCovariance()

SYNOPSIS

virtual TSMWarning* getCurrentParameterCovariance(
 const int& index1,
 const int& index2,
 double& covariance)

 throw (TSMError) = 0;

DESCRIPTION

The getCurrentParameterCovariance() function returns the covariance of the
specified parameter pair (index1, index2). The variance of the given parameter can
be obtained by using the same value for index1 and index2.

INPUTS

index1 selects the first of the parameter pair.

index2 selects the second of the parameter pair.

The variance of a given parameter is given when index1= index2.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

The getCurrentParameterCovariance() function returns a double specifying the
covariance value of the specified parameter pair.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

 79

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 INDEX_OUT_OF_RANGE:

Either index1 or index2 is less than zero or greater than or equal to the
value returned by getNumParameters().

NOTES
This method set the covariance of the specified parameter pair. The variance of a
single parameter can be set by using the same value for index1 and index2.

SEE ALSO

tsmSensorModel::getNumParameters,
tsmSensorModel::originalParameterCovariance

 80

NAME

5.12.8 tsmSensorModel::setCurrentParameterCovariance()

SYNOPSIS

virtual TSMWarning* setCurrentParameterCovariance(
 const int& index1,
 const int& index2,
 const double& covariance)

 throw (TSMError) = 0;

DESCRIPTION

The setCurrentParameterCovariance() function is used to set the covariance
value of the specified parameter pair.

INPUTS

index1 selects the first of the parameter pair.

index2 selects the second of the parameter pair.

The variance of a given parameter is set when index1= index2.

covariance sets the covariance value of the specified parameter pair.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.
The function updates the sensor model covariance values.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

 81

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 INDEX_OUT_OF_RANGE:

Either index1 or index2 is less than zero or greater than or equal to the
value returned by getNumParameters().

NOTES
This method set the covariance of the specified parameter pair. The variance of a
single parameter can be set by using the same value for index1 and index2.

SEE ALSO

tsmSensorModel::getNumParameters,
tsmSensorModel::originalParameterCovariance

 82

NAME

5.12.9 tsmSensorModel::setOriginalParameterCovariance()

SYNOPSIS

virtual TSMWarning* setOriginalParameterCovariance(
 const int& index1,
 const int& index2,
 const double& covariance)

 throw (TSMError) = 0;

DESCRIPTION

The setOriginalParameterCovariance() function sets the covariance of the
specified parameter pair (index1, index2). The variance of the given parameter can
be set using the same value for index1 and index2.

INPUTS

index1 selects the first of the parameter pair.

index2 selects the second of the parameter pair.

The variance of a given parameter is set when index1= index2.

covariance sets the covariance value of the specified parameter pair.

OUTPUTS

The setOriginalParameterCovariance() function updates the sensor model’s
covariance matrix.

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

 83

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 INDEX_OUT_OF_RANGE:

Either index1 or index2 is less than zero or greater than or equal to the
value returned by getNumParameters().

NOTES
This function sets the original covariance of the specified parameter pair. The variance
of a single parameter can be set by using the same value for index1 and index2.

SEE ALSO

tsmSensorModel::getNumParameters,
tsmSensorModel::currentParameterCovariance

 84

NAME

5.12.10 tsmSensorModel::getOriginalParameterCovariance()

SYNOPSIS

virtual TSMWarning* getOriginalParameterCovariance(
 const int& index1,
 const int& index2,
 double& covariance)
 throw (TSMError) = 0;

DESCRIPTION

The getOriginalParameterCovariance() function gets the covariance of the
specified parameter pair (index1, index2). The variance of the given parameter can
be obtained using the same value for index1 and index2.

INPUTS

index1 selects the first of the parameter pair.

index2 selects the second of the parameter pair.

The variance of a given parameter is gotten when index1= index2.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

covariance returns a double specifying the covariance value of the specified
parameter pair.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.

 85

− Errors:
UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 INDEX_OUT_OF_RANGE:

Either index1 or index2 is less than zero or greater than or equal to the
value returned by getNnumParameters().

NOTES
This function returns the original covariance of the specified parameter par. The
variance of a single parameter can be obtained by using the same value for index1
and index2.

SEE ALSO

tsmSensorModel::getNumParameters,
tsmSensorModel::currentParameterCovariance

 86

NAME

5.12.11 tsmSensorModel::getTrajectoryIdentifier()

SYNOPSIS

virtual TSMWarning* getTrajectoryIdentifier(
 std::string &trajectoryId)

 throw (TSMError) = 0;

DESCRIPTION

The getTrajectoryIdentifier() function returns trajectoryId to indicate
which trajectory was used to acquire the image. This trajectoryId is unique for each
sensor type on an individual path.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

trajectoryId is a null-terminated ASCII character std:: string containing the
trajectory name.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
DATA_NOT_AVAILABLE:

 warning is returned if the trajectory ID was never set.

 87

− Errors:
UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES
This function returns a unique identifier to indicate which trajectory was used to acquire
the image. This ID is unique for each sensor type on an individual path.

trajectoryId must be allocated by the application.

getTrajectoryIdentifier() may not have any meaning for sensor models that do
not pertain to real sensors (such as a polynomial sensor model).

SEE ALSO

tsmSensorModel::getSensorIdentifier, tsmSensorModel::getImageIdentifier

 88

NAME

5.12.12 tsmSensorModel::getReferenceDateAndTime()

SYNOPSIS

virtual TSMWarning* getReferenceDateAndTime(
 std::string &date_and_time)

 throw (TSMError)= 0;
DESCRIPTION

The getReferenceDateAndTime() function returns a UTC (Universal Time
Coordinated) date and time near the time of the trajectory for the associated image.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.
The reference date and time of the image is provided in a null-terminated ASCII
character in one of the forms identified in Table 5.

Precision Format Examples

Year yyyy “1961”
“2000”

Month yyyymm “196104”
“200002”

Day yyyymmdd “19610420”
“20000229”

Hour yyyymmddThh “19610420T20Z”
“20000229T11Z”

Minute yyyymmddThhmm “19610420T2000Z”
“20000229T1130Z”

Second yyyymmddThhmmss “19610420T200000Z”
“20000229T113000Z”

Table 5 - Date and Time Format

 89

The maximum length of such a date and time std:: string is 16 characters (17 when the
null terminator is included).

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
DATA_NOT_AVAILABLE:

 Warning is returned if the date and time are not set.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES
A single reference date and time are associated with each trajectory and image times
are all provided relative to this reference. The returned precision of the reference date
and time should be heeded by applications.
The date produced by this function follows the ISO 8601 standard for date
representation. Applications should be aware that this standard allows hours in the
range 0 to 24 (24 being used strictly for midnight) and seconds in the range 0 to 60 (60
being used strictly for leap seconds).
ISO 8601 recommends that the latin capital letter T be placed between the date and the
time.
ISO 8601 assumes the time is in local time. The capital letter Z designates Universal
Time (UTC)

SEE ALSO

tsmSensorModel::getImageTime, tsmSensorModel::getTrajectoryIdentifier

 90

NAME

5.12.13 tsmSensorModel::getImageTime()

SYNOPSIS

virtual TSMWarning* getImageTime(
 const double& line,
 const double& sample,
 double& time)

 throw (TSMError) = 0;

DESCRIPTION

The getImageTime() function computes the time in seconds at which the pixel
specified by line and sample was imaged. The time provided is relative to the
reference date and time given by getReferenceDateAndTime.

INPUTS

line and sample are in units of pixels.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

time contains the time in seconds from the reference date and time.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

 91

Use this error if no other error is suitable. Its use is discouraged.

NOTES
This function returns the time in seconds at which the specified pixel was imaged. The
time provided is relative to the reference date and time given by the
getReferenceDateAndTime function. getImageTime represents the time offset
with the trajectory associated with the given image.

SEE ALSO
tsmSensorModel::getReferenceDateAndTime,
tsmSensorModel::getSensorPosition,
tsmSensorModel::getSensorVelocity,
tsmSensorModel::getTrajectoryIdentifier

 92

NAME

5.12.14 tsmSensorModel::getSensorPosition()

SYNOPSIS

virtual TSMWarning* getSensorPosition(
 const double& line,
 const double& sample,
 double& x,
 double& y,
 double& z)

 throw (TSMError) = 0;

virtual TSMWarning* getSensorPostion(
 const double& time
 double& x,
 double& y,
 double& z)

 throw (TSMError) = 0

DESCRIPTION

The getSensorPosition() function returns the position of the physical sensor at the
given position in the image.

INPUTS

line is an offset in image rows from the image origin.

sample is an offset in image columns from the image origin.

time is time pixel is imaged as reported by getImageTime ().

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

x, y and z contain the position of the sensor in meters.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS

 93

All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 UNSUPPORTED_FUNCTION:

NOTES

None

SEE ALSO

tsmSensorModel::getImageTime, tsmSensorModel::getReferenceDateAndTime,
tsmSensorModel::getSensorVelocity

 94

NAME

5.12.15 tsmSensorModel::getSensorVelocity()

SYNOPSIS

virtual TSMWarning* getSensorVelocity(
 const double& line,
 const double& sample,
 double& vx,
 double& vy,
 double& vz)

 throw (TSMError) = 0;

virtual TSMWarning* getSensorVelocity (
 const double& time,
 double& vx,
 double& vy,
 double& vz)
 throw (TSMError) = 0;

DESCRIPTION

The getSensorVelocity() function calculates the velocity of the physical sensor at
the time a given image pixel is imaged. This can be specified by supplying either the
location of the pixel imaged or the time of imaging..

INPUTS

line is an offset in image rows from the image origin.

sample is an offset in image columns from the image origin.

time is time prixel is imaged as reported by getImageTime()>

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

Upon successful completion, getSensorVelocity() returns the velocity vx, vy and
vz of the sensor in meters per second.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

 95

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 UNSUPPORTED_FUNCTION:

NOTES

None

SEE ALSO

tsmSensorModel::getImageTime,
tsmSensorModel::getReferenceDateAndTime,
tsmSensorModel::getSensorPosition

 96

NAME

5.12.16 tsmSensorModel::setCurrentParameterValue()

SYNOPSIS

virtual TSMWarning* setCurrentParameterValue(
 const int& index,
 const double& value)
throw (TSMError) = 0;

DESCRIPTION

The setCurrentParameterValue() method is used to set the value of the
adjustable parameter indicated by index.

INPUTS

index selects the sensor parameter.

value contains the value to set the parameter.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

Upon successful completion, the setCurrentParameterValue() method updates
the sensor model.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

 97

Use this error if no other error is suitable. Its use is discouraged.

 INDEX_OUT_OF_RANGE:

index is less than zero or greater than or equal to the value returned by
getNumParameters().

NOTES

index is a zero subscripted reference (values range from 0 through N-1, with N being
the maximum number of indices)

SEE ALSO
tsmSensorModel::getNumParameters,
tsmSensorModel::getoriginalParameterValue,
tsmSensorModel::getcurrentParameterCovariance

 98

NAME

5.12.17 tsmSensorModel::getCurrentParameterValue()

SYNOPSIS

virtual double getCurrentParameterValue(
 const int& index,

 double& value)
 throw (TSMError)= 0;

DESCRIPTION

The getCurrentParameterValue()method returns the value of the adjustable
parameter given by index.

INPUTS

index selects the sensor parameter.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

value returns a double corresponding to the value of the adjustable parameter.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 INDEX_OUT_OF_RANGE:

 99

index is less than zero or greater than or equal to the value returned by
getNumParameters().

 BOUNDS:

parameterType is less than zero or greater than the maximum specified
by the data type parameterType.

NOTES

This function returns the value of the model parameter indicated by the given index.

index is a zero subscripted reference (values range from 0 through N-1, with N being
the maximum number of indices)

See section 5.13.24 for a definition of the variable parameterType.

SEE ALSO
tsmSensorModel::getNumParameters,
tsmSensorModel::originalParameterValue,
tsmSensorModel::currentParameterCovariance

 100

NAME

5.12.18 tsmSensorModel::getParameterName()

SYNOPSIS

virtual TSMWarning* getParameterName(
 const int& index,
 std::string& name)

 throw (TSMError) = 0;

DESCRIPTION

The getParameterName() function returns name to indicate the name of the sensor
model parameter for the specified index.

INPUTS

index selects the sensor parameter.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

name is a null-terminated ASCII character string that contains the parameter name.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 101

 INDEX_OUT_OF_RANGE:

The index is less than zero or greater than or equal to the value returned
by getNumParameters()

NOTES

name must be allocated by the application.

The getParameterName() function is intended for reporting purposes only. The
parameter units may also be returned as part of the string.

index is a zero subscripted reference (values range from 0 through N-1, with N being
the maximum number of indices)

SEE ALSO
tsmSensorModel::getNumParameters

 102

NAME

5.12.19 tsmSensorModel::getNumParameters()

SYNOPSIS

virtual TSMWarning* getNumParameters(

 int& numParams)

 throw (TSMError) = 0;

DESCRIPTION

The getNumParameters() function gets the number of parameters for the associated
sensor model.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

Upon successful completion, getNumParameters() returns the number of parameters
defined for the sensor model. The returned value is a one subscripted reference (values
start at 1).

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 103

NOTES
The number of original parameters and the number of current parameters is the same
and the function getNumParameters() provides the number of parameters for either.

SEE ALSO

tsmSensorModel::getCurrentParameterValue,
tsmSensorModel::getOriginalParameterValue,

 104

NAME

5.12.20 tsmSensorModel::setOriginalParameterValue()

SYNOPSIS

virtual TSMWarning* setOriginalParameterValue(
 const int& index,
 const double& value)

 throw (TSMError) = 0;

DESCRIPTION

The setOriginalParameterValue() method is used to set the original parameter
value of the indexed parameter.
INPUTS

index selects the sensor parameter.

value contains the value to set the parameter.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

Upon successful completion, the setOriginalParameterValue() method updates
the sensor model.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

 105

Use this error if no other error is suitable. Its use is discouraged.

 INDEX_OUT_OF_RANGE:

 index is less than zero or greater than or equal to the value returned by
getNumParameters()

NOTES
The method sets the original parameter value indicated by the index. This form is
typically used when if is necessary to correct errors or provide missing information in the
original data.

index is a zero subscripted reference (values range from 0 through N-1, with N being
the maximum number of indices)

SEE ALSO

tsmSensorModel::getOriginalParameterCovariance,
tsmSensorModel::setParameterType, tsmSensorModel::getParameterValue

 106

NAME

5.12.21 tsmSensorModel::getOriginalParameterValue()

SYNOPSIS

virtual TSMWarning* getOriginalParameterValue(
 const int& index,

 double& value)

 throw (TSMError)= 0;

DESCRIPTION

The getOriginalParameterValue() function returns the value of the adjustable
parameter given by index.

INPUTS

index selects the sensor parameter.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

value returns a double corresponding to the value of the indexed adjustable
parameter. The value will have the type given by the function getParameterType().

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 107

 INDEX_OUT_OF_RANGE:

 index is less than zero or greater than or equal to the value returned by
getNumParameters()

 BOUNDS:

NOTES
This function returns the original parameter value indicated by the index.

See the function getParameterType() for a definition of the variable
parameterType.

SEE ALSO

tsmSensorModel::originalParameterCovariance,
tsmSensorModel::getParameterType,
tsmSensorModel::getParameterValue

 108

NAME

5.12.22 tsmSensorModel::getParameterType()

SYNOPSIS

virtual TSMWarning* getParameterType(
 const int& index,
 TSMMisc::Param_CharType& pType)
 throw (TSMError) = 0;

DESCRIPTION

The getParameterType() function returns the type of the parameter given by index.

INPUTS

index selects the sensor parameter.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

pType returns an enumerated type corresponding to one of the following values:

0 = None – the parameter value has not yet been initialized,
1 = Fictitious – the parameter value has been calculated by resection or other
means,
2 = Real – the parameter value has been measured or read from support
data,
3 = Exact – the parameter value has been specified and is assumed to have
no uncertainty.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.

 109

− Warnings:
UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 INDEX_OUT_OF_RANGE:

index is less than zero or greater than or equal to the value returned by
getNumParameters().

NOTES
The return values, None, Fictitious, Real and Exact, report the status of each adjustable
parameter.

SEE ALSO

tsmSensorModel::getOriginalParameterCovariance,
tsmSensorModel::getOriginalParameterValue

 110

NAME

5.12.23 tsmSensorModel::getPedigree()

SYNOPSIS

virtual TSMWarning* getPedigree(
 std::string& pedigree)
 throw (TSMError) = 0;

DESCRIPTION

The getPedigree() function returns a character string that identifies the sensor, the
model type, its mode of acquisition and processing path. For example, an image that
could produce either an optical sensor model or a cubic rational polynomial model
would produce different pedigrees for each case.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

pedigree is a null-terminated ASCII character string that contains the pedigree
information.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 111

NOTES

pedigree must be allocated by the application.

The getPedigree() function is intended for reporting purposes only.

SEE ALSO

None

 112

NAME

5.12.24 tsmSensorModel::getImageIdentifier()

SYNOPSIS

virtual TSMWarning* getImageIdentifier(
 std::string& imageId)

 throw (TSMError)= 0;

DESCRIPTION

The getImageIdentifier() function returns imageId, a unique identifier
associated with the given sensor model.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

imageId is a null-terminated ASCII character string that contains the image identifier.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
DATA_NOT_AVAILABLE:

 warning is returned if the requested data is unknown.
− Errors:

UNKNOWN_ERROR:

 113

Use this error if no other error is suitable. Its use is discouraged.

NOTES

imageId must be allocated by the application.

imageId is a unique identifier indicating the imaging operation associated with this
sensor model.

SEE ALSO
tsmSensorModel::getCollectionIdentifier,
tsmSensorModel::getSensorIdentifier,
tsmSensorModel::getTrajectoryIdentifier,
tsmSensorModel::setImageIdentifier

 114

NAME

5.12.25 tsmSensorModel::setImageIdentifier()

SYNOPSIS

virtual TSMWarning* setImageIdentifier(
 const std::string& imageId)

 throw (TSMError) = 0 ;

DESCRIPTION

The setImageIdentifier() function sets a unique identifier for the image to which
the sensor model pertains.

INPUTS

imageId is an ASCII string containing the new image identifier value.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.
The image identifier is updated.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 IMAGE_ID_TOO_LONG:

 imageId is greater than characters.

 115

NOTES

imageId is a null-terminated ASCII character string that is the image name. It can be
no more than characters including the string termination character.

imageId should be a universally unique string.

SEE ALSO
tsmSensorModel::getImageIdentifier

 116

NAME

5.12.26 tsmSensorModel::getSensorIdentifier()

SYNOPSIS

virtual TSMWarning* getSensorIdentifier(
 std::string& sensorId)

 throw (TSMError) = 0;

DESCRIPTION

The getSensorIdentifier() function returns sensorId to indicate which sensor
was used to acquire the image. This sensorId is meant to uniquely identify the sensor
used to make the image.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

sensorId is a null-terminated ASCII character string containing the sensor identifier.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
DATA_NOT_AVAILABLE:

warning is returned if the sensor ID is unknown.
− Errors:

UNKNOWN_ERROR:

 117

Use this error if no other error is suitable. Its use is discouraged.

NOTES
This function returns a unique identifier to indicate which sensor was used to acquire
the image.

sensorId must be allocated by the application to hold at least characters.

SEE ALSO

tsmSensorModel::getCollectionIdentifier,
tsmSensorModel::getImageIdentifier,
tsmSensorModel::getTrajectoryIdentifier,
tsmSensorModel::getPlatformIdentifier

 118

NAME

5.12.27 tsmSensorModel::getPlatformIdentifier()

SYNOPSIS

virtual TSMWarning* getPlatformIdentifier(
 std::string& platformId)

 throw (TSMError) = 0;

DESCRIPTION

The getPlatformIdentifier() function returns platformId to indicate which
sensor was used to acquire the image. This platformId is meant to uniquely identify
the platform used to collect the image.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

platformId is a null-terminated ASCII character string containing the platform
identifier.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
DATA_NOT_AVAILABLE:

warning is returned if the platform ID is unknown.
− Errors:

 119

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES

platformId must be allocated by the application.

SEE ALSO

tsmSensorModel::getCollectionIdentifier,
tsmSensorModel::getImageIdentifier,
tsmSensorModel::getTrajectoryIdentifier,
tsmSensorModel::getSensorIdentifier

 120

 NAME

5.12.28 tsmSensorModel::getImageSize()

SYNOPSIS

virtual TSMWarning* getImageSize(
 int& num_lines,
 int& num_samples)

 throw (TSMError) = 0;

DESCRIPTION

The getImageSize() function gets the number of lines and samples in the imaging
operation.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

Upon successful completion, the getImageSize() function returns num_lines and
num_samples, the numbers of lines and samples in the imaging operation for the
sensor model.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

 121

Use this error if no other error is suitable. Its use is discouraged.

SEE ALSO

 122

NAME

5.12.29 tsmSensorModel::getSensorModelState()

SYNOPSIS

virtual TSMWarning* getSensorModelState(

 std::string& state)
 throw (TSMError) = 0;

DESCRIPTION

The getSensorModelState() function returns the sensor model’s state data. The
first value of the sensor model’s state is a unique identifier that indicates which TSM,
including version number, created the state. The TSM creator defines the content of the
state data. The format of the state data is ASCII.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

state returns a character string that contains the state data.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 123

NOTES
The state includes the current parameter values for the model.
This method returns the current state of the model in an intermediate form. This
intermediate form can then processed, for example, by saving to file so that this model
can be instantiated at a later date. The derived SensorModel is responsible for saving
all information needed to restore itself to its current state from this intermediate form. A
NULL pointer is returned if it is not possible to save the current state

SEE ALSO

None

 124

NAME

5.12.30 tsmSensorModel::getValidAltitudeRange()

SYNOPSIS

virtual TSMWarning* getValidAltitudeRange(
 double& minAltitude,
 double& maxAltitude)

 throw (TSMError) = 0;

DESCRIPTION

The getValidAltitudeRange() function returns the minimum and maximum
altitudes that describe the range of validity of the model. For example, the model may
not be valid at altitudes above the altitude of the sensor for physical models.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

minAltitude is the minimum valid altitude in meters above the WGS-84 ellipsoid.
maxAltitude is the maximum valid altitude in meters above the WGS-84 ellipsoid.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

 125

Use this error if no other error is suitable. Its use is discouraged.

NOTES
If there is no limit in the altitude range, the function will return +- 99,999 meters.

SEE ALSO

 126

NAME

5.12.31 tsmSensorModel::getIlluminationDirection()

SYNOPSIS

virtual TSMWarning* getIlluminationDirection(
 const double& x,
 const double& y,
 const double& z,
 double& direction_x,
 double& direction_y,
 double& direction_z)

 throw (TSMError) = 0;

DESCRIPTION

The getIlluminationDirection() function calculates the direction of illumination
at the given ground position x, y, z. The ground position is given in the coordinate
system described in paragraph 5.1.2. The direction vectors are returned in the same
coordinate system

INPUTS

x, y, and z are ground coordinates in meters.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

Upon successful completion, getIlluminationDirection() produces three
doubles, direction_x , direction_y and direction_z,defining a direction
vector that points from the illumination source to the given ground point.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.

 127

− Warnings:
UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

 UNKNOWN_ERROR:

The sensor model does not contain enough information to compute the
direction of illumination.
Use this error if no other error is suitable. Its use is discouraged.

NOTES
This function calculates the direction of illumination with respect to ground space at the
given ground position.

SEE ALSO

None

 128

NAME

5.12.32 tsmSensorModel::getNumSystematicErrorCorrections()

SYNOPSIS

virtual TSMWarning* getNumSystematicErrorCorrections(

 int& numSec)

 throw (TSMError) = 0;

DESCRIPTION

The getNumSystematicErrorCorrections() function gets the number of
systematic error corrections for the associated sensor model.

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

numSec returns the number of systematic error corrections defined for the sensor
model. The returned value is a one subscripted reference (values start at 1).

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 129

NOTES
None

SEE ALSO

tsmSensorModel::getSystematicErrorCorrectionName

 130

NAME

5.12.33 tsmSensorModel::getSystematicErrorCorrectionName()

SYNOPSIS

virtual TSMWarning* getSystematicErrorCorrectionName(
 const int& index,
 std::string& name)

 throw (TSMError) =0;

DESCRIPTION

The getSystematicErrorCorrectionName() function returns name to indicate the
name of the sensor model systematic error correction for the specified index.

INPUTS

index selects the systematic error correction parameter.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

name is a null-terminated ASCII character string that contains the systematic error
correction name.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 131

 INDEX_OUT_OF_RANGE:

The index is less than zero or greater than or equal to the value returned
by numSystematicErrorCorrections()

NOTES

name must be allocated by the application.

The getSystematicErrorCorrectionName() function is intended for reporting
purposes only.

index is a zero subscripted reference (values range from 0 through N-1, with N being
the maximum number of indices)

SEE ALSO
 tsmSensorModel::numSystematicErrorCorrections

 132

NAME

5.12.34 tsmSensorModel::setCurrentSystematicErrorCorrectionSwi
tch()

SYNOPSIS

virtual TSMWarning* setCurrentSystematicErrorCorrectionSwitch(
 const int& index,
 const bool& value,
 const TSMMisc::Param_CharType& parameterType)

 throw (TSMError)= 0;

DESCRIPTION

The setCurrentSystematicErrorCorrectionSwitch() is used to set the switch
of the systematic error correction indicated by index. A systematic error correction
switch of “False” turns off the associated (by index) systematic error correction. A
value of “True” turns on the associated (by index) systematic error correction.

INPUTS

index selects the systematic error correction switch.

The “value” is a Boolean switch.

parameterType contains the value to set the parameter type.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.

 133

− Errors:
UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 INDEX_OUT_OF_RANGE:

The index is less than zero or greater than or equal to the value returned
by numSystematicErrorCorrections().

NOTES
This function returns the value of the systematic error correction switch indicated by the
given index.

index is a zero subscripted reference (values range from 0 through N-1, with N being
the maximum number of indices)

SEE ALSO
tsmSensorModel::numSystematicErrorCorrections,
tsmSensorModel::getSystematicErrorCorrectionName

 134

NAME

5.12.35 tsmSensorModel::getCurrentSystematicErrorCorrectionSwi
tch()

SYNOPSIS

virtual TSMWarning* getCurrentSystematicErrorCorrectionSwitch(
 const int& index,

 bool& value)
 throw (TSMError)= 0;

DESCRIPTION

The getCurrentSystematicErrorCorrectionSwitch()method returns the value
of the systematic error correction switch given by index.

INPUTS

index selects the systematic error correction switch.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

value returns a boolean corresponding to the state of the associated systematic error
correction.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 135

 INDEX_OUT_OF_RANGE:

The index is less than zero or greater than or equal to the value returned
by getNumSystematicErrorCorrections().

NOTES
This function returns the value of the systematic error correction switch indicated by the
given index.

index is a zero subscripted reference (values range from 0 through N-1, with N being
the maximum number of indices)

SEE ALSO

tsmSensorModel::getNumSystematicErrorCorrections,
tsmSensorModel::getSystematicErrorCorrectionName

 136

NAME

5.12.36 tsmSensorModel::getReferencePoint()

SYNOPSIS

virtual TSMWarning* getReferencePoint(

 double& x,
 double& y,
 double& z)

 throw (TSMError) =0;

DESCRIPTION

The getReferencePoint() function returns x, y and z in meters to indicate the
general location of the image.

INPUTS
None

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

x, y, and z are ground coordinates in meters.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS

All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

 137

UNKNOWN_ERROR:

 The reference point was not set.
Use this error if no other error is suitable. Its use is discouraged.

USAGE

Coordinates are rough and may or may not refer to a point on the image. Typically, the
coordinate is an estimate of the center point, but could be the center of the first line, etc.

SEE ALSO
tsmSensorModel::setReferencePoint

 138

NAME

5.12.37 tsmSensorModel::setReferencePoint()

SYNOPSIS

virtual TSMWarning* setReferencePoint(

 const double& x,
 const double& y,
 const double& z)

 throw (TSMError)=0;

DESCRIPTION

The setReferencePoint() function sets the reference point to the input x, y and z
position in meters to indicate the general location of the image.

INPUTS

x, y, and z are ground coordinates in meters.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.
The reference point of the sensor model is updated.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

 139

USAGE
Coordinates do not need to refer to a point on the image. Typically, the coordinate is an
estimate of the center point, but could be the center of the first line, etc.

SEE ALSO
tsmSensorModel::getReferencePoint

 140

NAME

5.12.38 tsmSensorModel::getSensorModelName()

SYNOPSIS

virtual TSMWarning* getSensorModelName(

 std::string& name)
 throw (TSMError) = 0 ;

DESCRIPTION

The getSensorModelName() function returns a string indicating the name of the
sensor model. The sensor model’s name is described in section 3.1.13.

INPUTS
None

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

name will return a character string containing the sensor model’s name.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

USAGE

 141

SEE ALSO

 142

NAME

5.12.39 tsmSensorModel::setParameterType()

SYNOPSIS

virtual TSMWarning* setParameterType(
 const int& index,
 const TSMMisc::Param_CharType& parameterType)
 throw (TSMError) = 0;

DESCRIPTION

The setParameterType() method is used to set the value of the parameter type of
the indicated adjustable parameter.

INPUTS

index selects the sensor parameter.

parameterType contains the value to set the parameter type.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

Upon successful completion, the setParameterType() method updates the sensor
model.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

 143

Use this error if no other error is suitable. Its use is discouraged.

 INDEX_OUT_OF_RANGE:

index is less than zero or greater than or equal to the value returned by
numParameters().

 BOUNDS:

parameterType is less than zero or greater than the maximum specified
by the data type parameterType.

NOTES

index is a zero subscripted reference (values range from 0 through N-1, with N being
the maximum number of indices)

See section 5.12.22 for a definition of the variable parameterType.

SEE ALSO
tsmSensorModel::numParameters, tsmSensorModel::getParameterType

 144

NAME

5.12.40 tsmSensorModel::getCovarianceModel()

SYNOPSIS

virtual TSMWarning* getCovarianceModelParameters(
 tsm_CovarianceModel*& covModel)
 throw (TSMError) = 0;

DESCRIPTION

The getCovarianceModel() function returns covariance model information. This
data supplies the data to compute cross covariance between images. Images may be
correlated because they are taken by the same sensor or from sensors on the same
platform. Images may also be correlated due to post processing of the sensor models.
The data returned here may need to be supplemented with the single image covariance
from getCurrentParameterCovariance() and getExtraError().

INPUTS
None.

OUTPUTS

covModel is a pointer to a class containing data necessary to perform error analysis
and propagation. A NULL pointer may be returned indicating that there are no
correlations between images from the sensor.

ERRORS & WARNINGS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

All errors and warnings documented in section 6.4 must be handled. The following lists
of warnings and errors are reasonably likely to occur from this call.
− Warnings:

DATA_NOT_AVAILABLE:

 145

warning is returned if the requested data is not available.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES

This function allocates memory for the covariance model internally using new(). The
calling function must free it using delete().

SEE ALSO

 146

NAME

5.12.41 tsmSensorModel::getUnmodeledError()

SYNOPSIS

virtual TSMWarning* getUnmodeledError(

const double line,
const double sample,
double covariance[4])
throw (TSMError) = 0;

DESCRIPTION

The getUnmodeledError function gives a sensor specific error for the given input
image point. The error is reported as the four terms of a 2x2 covariance mensuration
error matrix. This error term is meant to map error terms that are not modeled in the
sensor model to image space for inclusion in error propagation. The extra error is added
to the mensuration error that may already be in the matrix.

OUTPUTS

The matrix is filled in as follows:

covariance[0] = line variance.

covariance[1] = line-sample covariance.

covariance[2] = line-sample covariance.

covariance[3] = sample variance.

ERRORS & WARNINGS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

 147

All errors and warnings documented in section 6.4 must be handled. The following lists
of warnings and errors are reasonably likely to occur from this call.
− Warnings:

DATA_NOT_AVAILABLE:

warning is returned if the requested data is not available.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

USAGE

covariance has to have memory allocated by the calling routine to hold at least four
doubles. The values should be initialized since this function adds to the uncertainty.

SEE ALSO
getUnmodeledCrossCovariance()

 148

NAME

5.12.42 tsmSensorModel::getUnmodeledCrossCovariance()

SYNOPSIS

virtual TSMWarning* getUnmodeledCrossCovariance (

const double pt1Line,
const double pt1Sample,
const double pt2Line,
const double pt2Sample,
double crossCovariance[4])
throw (TSMError) = 0;

DESCRIPTION

The getUnmodeledCrossCovariance function gives the cross covariancefor
unmodeled error between two image points on the same image. The error is reported as
the four terms of a 2x2 matrix. The unmodeled cross covariance is added to any values
that may already be in the cross covariance matrix.
OUTPUTS

The matrix is filled in as follows:

crossCovariance[0] = line variance.

crossCovariance[1] = line-sample covariance.

crossCovariance[2] = line-sample covariance.

crossCovariance[3] = sample variance.

ERRORS & WARNINGS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

 149

All errors and warnings documented in section 6.4 must be handled. The following lists
of warnings and errors are reasonably likely to occur from this call.
− Warnings:

DATA_NOT_AVAILABLE:

warning is returned if the requested data is not available.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

None.

USAGE

crossCovariance has to have memory allocated by the calling routine to hold at least
four doubles. The values should be initialized since this function adds to the uncertainty.

SEE ALSO
getUnmodeledError()

 150

NAME

5.12.43 tsmSensorModel::getCollectionIdentifier()

SYNOPSIS

virtual TSMWarning* getCollectionIdentifier(
 std::string& collectionId)

 throw (TSMError) = 0;

DESCRIPTION

The getCollectionIdentifier() function returns collectionId to indicate an
identifier that uniquely identifies a collection activity by a sensor platform. This
collectionId will vary depending on the type of sensor and platform. For example,
for airborne platforms this may be called “mission ID” (e.g., ACFT_MISN_ID field in the
NITF ACTFA and ACFTB tags), while for orbital platforms this will likely correspond to
some data element of the ephemeris (e.g., pass number).

INPUTS
None.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

collectionId is a null-terminated ASCII character string containing the collection
identifier.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.
− Warnings:

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
DATA_NOT_AVAILABLE:

 151

warning is returned if the collection ID is unknown or not applicable for this
sensor model.

− Errors:
UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES

collectionId must be allocated by the application.

SEE ALSO

tsmSensorModel::getImageIdentifier,
tsmSensorModel::getPlatformIdentifier,
tsmSensorModel::getTrajectoryIdentifier,
tsmSensorModel::getSensorIdentifier

 152

NAME

5.12.44 tsmSensorModel::isParameterShareable()

SYNOPSIS

virtual TSMWarning* isParameterShareable(
 const int& index,

 bool& shareable)
 throw (TSMError) = 0;

DESCRIPTION

The isParameterShareable() function returns a shareable flag to indicate
whether or not the sensor model parameter adjustments are shareable across images
for the sensor model adjustable parameter referenced by index.

INPUTS

index selects the sensor model adjustable parameter.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

shareable is Boolean flag identifying whether or not the adjustments are shareable
across images.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.

− Warnings:

INDEX_OUT_OF_RANGE:

index is less than zero or greater than or equal to the value returned by
getNumParameters().

 153

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES

None.

SEE ALSO

tsmSensorModel::getNumParameters,
tsmSensorModel::getParameterSharingCriteria

 154

NAME

5.12.45 tsmSensorModel::getParameterSharingCriteria()

SYNOPSIS

virtual TSMWarning* getParameterSharingCriteria(
 const int& index,

 bool& requireModelNameMatch,
 bool& requireSensorIDMatch,
 bool& requirePlatformIDMatch,
 bool& requireCollectionIDMatch,
 bool& requireTrajectoryIDMatch,
 bool& requireDateTimeMatch,
 double& allowableTimeDelta)
 throw (TSMError) = 0;

DESCRIPTION

The getParameterSharingCriteria() function returns characteristics to indicate
how the sensor model adjustable parameter referenced by index may be shareable
across images.

INPUTS

index selects the sensor model adjustable parameter.

OUTPUTS

TSMWarning is a pointer to a TSM warning object. A value of NULL indicates no
warning is present.

requireModelNameMatch is a Boolean flag identifying whether or not the sensor
model names must match for the parameter to be shareable.

requireSensorIDMatch is a Boolean flag identifying whether or not the sensor IDs
must match for the parameter to be shareable.

requirePlatformIDmatch is a Boolean flag identifying whether or not the platform
IDs must match for the parameter to be shareable.

requireTrajectoryIDMatch is a Boolean flag identifying whether or not the
trajectory IDs must match for the parameter to be shareable.

requireCollectionIDMatch is a Boolean flag identifying whether or not the
collection IDs must match for the parameter to be shareable.

 155

requireDateTimeMatch is a Boolean flag identifying whether or not the image
date/times must be similar for the parameter to be shareable. If false, dates/times are
not relevant to the comparison.

allowableTimeDelta is a double float indicating the time gap (in seconds) that may
exist between images for the parameter to be shareable. If requireDateTimeMatch
is false, then this value is ignored.

TSMError returns the TSM Error object. A thrown TSMError is a terminal condition
and must be caught by the SET program.

ERRORS & WARNINGS
All errors and warnings documented in section 6.4, TSM Warnings and Errors, must be
handled. The following lists of warnings and errors are reasonably likely to occur from
this call.

− Warnings:

INDEX_OUT_OF_RANGE:

index is less than zero or greater than or equal to the value returned by
getNumParameters().

UNKNOWN_WARNING:

Use this warning if no other warning is suitable. Its use is discouraged.
− Errors:

UNKNOWN_ERROR:

Use this error if no other error is suitable. Its use is discouraged.

NOTES
Examples:

For a sample airborne platform with multiple sensors, a particular adjustable
parameter for the sensor model may be shareable across sensor models, if the
images were collected within 3 minutes of each other by sensors on the same
aircraft. In this case, the returns for this method could be:

requireModelNameMatch false

requireSensorIDMatch false

requirePlatformIDMatch true

requireTrajectoryIDMatch false

requireCollectionIDMatch true

requireDateTimeMatch true

 156

allowableTimeDelta 180.0

For a sample orbital platform with multiple sensors, a particular adjustable
parameter for the sensor model may be shareable across sensor models, if the
images were collected on the same pass number within 10 minutes of each
other, but only for a specific sensor model when the trajectories are the same. In
this case, the returns for this method could be:

requireModelNameMatch true

requireSensorIDMatch true

requirePlatformIDMatch true

requireTrajectoryIDMatch true

requireCollectionIDMatch true

requireDateTimeMatch true

allowableTimeDelta 600.0

SEE ALSO

tsmSensorModel::getNumParameters,
tsmSensorModel::isParameterShareable

 157

 Error Control

Two kinds of operational status are reported back to the calling application: errors and
warnings.

An error is a condition that prevents the completion of a function. The value of any
return variable is undefined when an error occurs.

A warning is a condition that allows a function to complete, but indicates that the course
of action may not have been carried out as expected. Values of return variables may be
suspect.

All TSM API functions include as a return an instance of the TSMWarning class. This
class can return the following data via accessor methods:
− WarningType: An enumeration type indicating the nature of the warning. Warnings

will be enumerated with positive values starting at 1. Known warnings will have an
enumerated value in the header file pre-defined to the text identified in the various
functions. As the software is developed the known warnings will be added to the end
of their list.

− A string containing a detailed warning message.
− A string indicating the function that produced the warning.

The WarningType enumeration type is defined in section 6.4.1 TSM Warning.

When there is no warning condition on a method then a NULL pointer must always be
returned.

All TSM API functions include a thrown instance of the TSMError class. This class can
return the following data via accessor methods:
− ErrorType: An enumeration type indicating the nature of the error. Errors will be

enumerated with positive values starting at 1. Known errors will have an
enumerated value in the header file pre-defined to the text identified in the various
functions. As the software is developed the known errors will be added to the end of
their list.

− A string containing a detailed error message.
− A string indicating the function that produced the error.

The ErrorType enumeration type is defined in section 6.4.2 TSM Error.

 158

The various API interfaces provide a SET with various options for handling errors and
warnings returned by the API. For example, consider the status checking from the
following API call:
Status = TSMPlugin::convertISDToSensorModelState (
 ISD,
 SensorModelName,
 SensorModelState);

The following example represent a method for handling the status checking.

try {
 Status = TSMPlugin::convertISDToSensorModelState (
 ISD,
 SensorModelName,
 SensorModelState);

 } catch (TSMError::ErrorType error)

 // An error occurred

 {

 ...
 }

if(Status == NULL)

// Success

 {

 ...

 }

else

// A warning occurred

 {if (Status.getWarning() ==...

 }

 159

The following table contains description conditions for each of the defined warning
enumerations:

 Table 6 - Warnings

Warning Name Description

UNKNOWN_WARNING

A warning was issued that was not contained on
this list.

DATA_NOT_AVAILABLE Additional data is needed.

PRECISION_NOT_MET Achieved precision is greater (less precise) than
desired precision.

NEGATIVE_PRECISION Desired precision is negative.

IMAGE_COORD_OUT_OF_BOUNDS The image coordinate (line and/or sample) is not in
the imaging operation.

IMAGE_ID_TOO_LONG String input is too long.

NO_INTERSECTION Intersection (i.e. imageToGround()) computed the
closest approach rather than true intersection.

 160

The following table contains description conditions for each of the defined error
enumerations:

Table 7 - Errors

Error Name Description

ALGORITHM TBD

BOUNDS One or more of the input parameters had a value
outside the valid range.

FILE_READ A file read error occurred
FILE_WRITE A file write error occurred

ILLEGAL_MATH_OPERATION
TBD (When would this be needed? Shouldn’t
there be bounds checking for data values that
would prevent illegal math?)

INDEX_OUT_OF_RANGE One or more of the input parameters had an index
value outside the valid range.

INVALID_SENSOR_MODEL_STATE The input sensor model state is invalid for this
sensor model.

INVALID_USE TBD

ISD_NOT_SUPPORTED The input ISD contains data not supported for this
sensor model.

MEMORY Insufficient system memory exists to perform the
desired operation.

SENSOR_MODEL_NOT_CONSTRUCTIBLE The sensor model could not be constructed with
the input data (ISD or state) provided.

SENSOR_MODEL_NOT_SUPPORTED The sensor model name indicated is not supported
by this TSMPlugin.

STRING_TOO_LONG String input is too long.
UNKNOWN_ERROR An unknown error condition has occurred.

UNSUPPORTED_FUNCTION Requested API function not supported by this
TSMPlugin or TSMSensorModel.

UNKNOWN_SUPPORT_DATA The input ISD contains insufficient support data to

 161

5.13 Memory Management
Since a SET may open multiple images simultaneously, it should be expected for a
given plugin to initialize the same sensor model multiple times, creating multiple
tsmSensorModel:: objects. The construction of the plugin and the model(s) contained
therein will support instantiation of multiple independent models, including multiple
independent models using the same image as input. This will require that the plugin
shared object to be able to operate with a SET that may be multi-process and/or multi
threaded; however, it is the responsibility of the SET for managing the multi-
process/multi-thread environment if the SET is so designed
This section references functions that need to be addressed in section 5.10 Detailed
Plug-in Method Descriptions and section 5.12 Sensor Model Functions.
All output parameters shall be allocated by the calling application except for:

A TSMSensorModel object returned from:
TSMPlugin::constructSensorModelFromState()

A TSMSensorModel object returned from:
TSMPlugin::constructSensorModelFromISD()

An array of covariance model parameters returned from:

tsmSensorModel::getCovarianceModelParameters()

In addition, many functions have an tsmWarning* return type. In normal operation,the
function will return a NULL pointer. However, when a condition arises that calls for a
warning to be issued, the memory for the warning is allocated by the function issuing
the warning.

The return tsmWarning parameters, which are allocated within the function, will be done
so using new (). They must be deallocated by the calling application using delete ().

1

6 APPENDIX A HEADER FILES
Warning: Extracting data from a Microsoft Word document to create code may introduce
errors.

6.1 TSMPlugin.h
//###
//
// FILENAME: TSMPlugin.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for abstract base class that is to provide a common interface from
// which all Tactical Sensor Model (TSM) plugin factories shall inherit.
//
// LIMITATIONS: None
//
// SOFTWARE HISTORY:
//
// Date Author Comment
// ----------- ------ -------
// May-2003 J. Olson Received initial version from BAE.
// 20-Jun-2003 KFM Revised to incorporate plugin list and automatic
// registration for derived types.
// 01-Jul-2003 KFM Updated signatures.
// 06-Feb-2004 KRW Incorporates changes approved by
// the January and February 2004
// configuration control board.
// 08-JUN-2004 TWC API 3.1
// 19-Aug-2004 PW Add throws
//
// NOTES:
//
// Initial coding of this class was accomplished by BAE Corporation. This
// version contains modifications by Harris Corporation with the primary
// goal of altering the method by which derived factories are "registered"
// with the base plugin class.
//
// To use this for a plugin, the developer must simply inherit from this
// class providing, at least, implementation for each pure virtual function.
// In order to allow the plugin to self-register itself and be recognized
// by the system as a "plugin", a static instance of the derived class must
// invoke the TSMPlugin constructor.
//
//###
#ifndef __TSMPLUGIN_H
#define __TSMPLUGIN_H

#include <list>
#include <string>
#include "TSMImageSupportData.h"
#include "TSMMisc.h"
#include "TSMError.h"

class TSMWarning;

2

class TSMSensorModel;
class tsm_ISD;

//---
// This is an example factory for plug ins. In the real world, we might have
// multiple different classes in each shared library that are made to work
// together. All these classes must be created by this factory class.
//---

class TSM_EXPORT_API TSMPlugin
{
public:

 //--
 // Types
 //--

 typedef std::list < const TSMPlugin* > TSMPluginList;

 class Impl;

 //--
 // Constructors/Destructor
 //--

 virtual ~TSMPlugin() {}

 //--
 // List Managing Methods
 //--

 static TSMWarning* getList(TSMPluginList*& aTSMPluginList)
 throw (TSMError);
 //>This method provides access to the list of all plugins that are
 // currently registered.
 //<

 static TSMWarning* findPlugin(
 const std::string& pluginName,
 TSMPlugin*& aTSMPlugin)
 throw (TSMError);

 // pre: None.
 // post: Returns a pointer to the first plugin found whose name is
 // aName; returns NULL if no such plugin found.

 static TSMWarning* removePlugin(
 const std::string& pluginName)
 throw (TSMError);

 //--
 // Plugin Interface
 //--

 virtual TSMWarning* getPluginName(
 std::string& pluginName)
 const throw (TSMError) = 0;

 //>This method returns the character std::string that identifies the plugin.
 //<

 //---
 // TSM Plugin Descriptors

3

 //---

 virtual TSMWarning* getManufacturer(
 std::string& manufacturer_name)
 const throw (TSMError) = 0;

 virtual TSMWarning* getReleaseDate(
 std::string& release_date)
 const throw (TSMError) = 0;

 //---
 // Sensor Model Availability
 //---

 virtual TSMWarning* getNSensorModels(int& n_sensor_models) const throw (TSMError) = 0;

 virtual TSMWarning* getSensorModelName(
 const int& sensor_model_index,
 std::string& sensor_model_name)
 const throw (TSMError) = 0;

 //---
 // Sensor Model Descriptors
 //---

 virtual TSMWarning* getSensorModelVersion(
 const std::string &sensor_model_name,
 int& version)
 const throw (TSMError) = 0;

 //---
 // Sensor Model Construction
 //---

 virtual TSMWarning* canSensorModelBeConstructedFromState(
 const std::string& sensor_model_name,
 const std::string& sensor_model_state,
 bool& constructible)
 const throw (TSMError) = 0;

 virtual TSMWarning* canSensorModelBeConstructedFromISD(
 const tsm_ISD& Image_support_data,
 const std::string& sensor_model_name,
 bool& constructible)
 const throw (TSMError) = 0;

 virtual TSMWarning* constructSensorModelFromState(
 const std::string& sensor_model_state,
 TSMSensorModel*& sensor_model)
 const throw (TSMError) = 0;

 virtual TSMWarning* constructSensorModelFromISD(
 const tsm_ISD& image_support_data,
 const std::string& sensor_model_name,
 TSMSensorModel*& sensor_model)
 const throw (TSMError) = 0;

 virtual TSMWarning* getSensorModelNameFromSensorModelState(
 const std::string& sensor_model_state,
 std::string& sensor_model_name)
 const throw (TSMError) = 0;

4

 //---
 // Image Support Data Conversions
 //---

 virtual TSMWarning* canISDBeConvertedToSensorModelState(
 const tsm_ISD& image_support_data,
 const std::string& sensor_model_name,
 bool& convertible)
 const throw (TSMError) = 0;

 virtual TSMWarning* convertISDToSensorModelState(
 const tsm_ISD& image_support_data,
 const std::string& sensor_model_name,
 std::string& sensor_model_state)
 const throw (TSMError) = 0;

protected:

 //--
 // Constructors
 //--

 TSMPlugin();
 //>This special constructor is responsible for registering each plugin
 // by adding it to theList. It is invoked by a special derived class
 // constructor that is only used by the static instance of the derived
 // class. (Refer to the example plugins to see how this is accomplished.)
 //<

private:

 //--
 // Data Members
 //--

 static TSMPluginList* theList;
 static Impl* theImpl;

}; // TSMPlugin

#endif // __TSMPLUGIN_H

5

6.2 tsm_ISD

6.2.1 TSMImageSupportData.h

//###
//
// FILENAME: TSMImageSupportData.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for the ISD base class. ISD is encapsulated in a C++ class for
// transfer through the TSM interface. ISD is passed as a pointer to a
// simple ISD base class (for example, tsm_ISD *isd). i
//
// LIMITATIONS: None
//
// Date Author Comment
// SOFTWARE HISTORY: 01-Jul-2003 LMT Initial version.
// 06-Feb-2004 KRW Incorporates changes approved by
// January and February 2004
// Configuration control board.
//
// NOTES:
//
//###
#ifndef __TSMIMAGESUPORTDATA_H
#define __TSMIMAGESUPORTDATA_H

#include <string>
#include "TSMMisc.h"

class TSM_EXPORT_API tsm_ISD
{
public:
 tsm_ISD() { _format = "UNKNOWN"; }
 virtual ~tsm_ISD(){ _format.erase(); }

 void getFormat(std::string &format) const { format = _format; }

protected:
 std::string _format;
};

#endif

6

6.2.2 tsm_ISDNITF21.h

//###
//
// FILENAME: tsm_ISDNITF21.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for the NITF 2.1 ISD class derived from the tsm_ISD base class.
// ISD is encapsulated in a C++ class for transfer through the TSM
// interface. ISD is passed as a pointer to a simple ISD base class
// (for example, tsm_ISD *isd).
//
// LIMITATIONS: None
//
// Date Author Comment
// SOFTWARE HISTORY: 01-Jul-2003 LMT Initial version.
// 06-Feb-2004 KRW Incorporates changes approved by
// January and February 2004
// Configuration control board.
// 01-Nov-2004 KRW October 2004 CCB
// 08-Jan-2005 KRW Multi Image/Frame – Administrative changes
//
// NOTES:
//
//###
#ifndef __TSM_ISDNITF21_H
#define __TSM_ISDNITF21_H

#include "TSMImageSupportData.h"

#include "TSMISDNITF20.h"
#include "TSMMisc.h"

class TSM_EXPORT_API NITF_2_1_ISD : public tsm_ISD
{
 public:
 NITF_2_1_ISD()
 { _format = "NITF2.1"; numTREs = 0; numImages = 0;
 fileTREs = NULL; images = NULL; numDESs = 0; fileDESs = NULL }

 ~NITF_2_1_ISD()
 { delete [] images; delete [] fileTREs; delete [] fileDESs;}

 std::string fileHeader;
 int numTREs;
 tre *fileTREs;
 int numDESs;
 des *fileDESs;
 int numImages;
 image *images;
};

#endif

7

6.2.3 tsm_ISDNITF20.h
//###
//
// FILENAME: tsm_ISDNITF20.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for the NITF 2.0 ISD class derived from the tsm_ISD base class.
// ISD is encapsulated in a C++ class for transfer through the TSM
// interface. ISD is passed as a pointer to a simple ISD base class
// (for example, tsm_ISD *isd).
//
// LIMITATIONS: None
//
// Date Author Comment
// SOFTWARE HISTORY: 01-Jul-2003 LMT Initial version.
// 06-Feb-2004 KRW Incorporated changes approved by
// January and February configuration
// control board.
// 01-Oct-2004 KRW October 2004 CCB
// NOTES:
//
//###
#ifndef __tsm_ISDNITF20_H
#define __tsm_ISDNITF20_H

#include "TSMImageSupportData.h"
#include "TSMMisc.h"

class TSM_EXPORT_API des
{
 public:

 des()
 {
desShLength = 0;
desSh = NULL;
 desDataLength = 0;
desData = NULL;
 }

 ~des()
 {
clear();
 }

 void setDES
 (
int des_sh_length,
char *des_sh,
int des_data_length,
char *des_data)
 {
 int i;

 clear();

 desShLength = des_sh_length;
 desSh = new char[desShLength+1];

8

 for(i = 0; i < desShLength; i++)
 desSh[i] = des_sh[i];

 desSh[desShLength] = '\0'; // in case NULL termination is needed

 desDataLength = des_data_length;
 desData = new char[desDataLength+1];

 for(i = 0; i < desDataLength; i++)
 desData[i] = des_data[i];

 desData[desDataLength] = '\0'; // in case NULL termination is needed
 }

 void clear()
 {
delete [] desSh;
delete [] desData;
desShLength = 0;
desDataLength = 0;
 }

 int desShLength;
 char *desSh;
 long desDataLength;
 char *desData;
};

class TSM_EXPORT_API tre
{
public:
 tre() { record = NULL; length = 0; name[0] = '\0'; }
 ~tre() { delete [] record; }

 void setTRE(char *tre) // tre includes TRE name, length and data
 {
 int i;
 char lengthString[6];

 clear();
 for(i = 0; i < 6; i++)
 name[i] = tre[i];

 // in case, NULL termination is needed
 name[6] = '\0';

 for(i = 6; i < 11; i++)
 lengthString[i-6] = tre[i];

 // in case, NULL termination is needed
 lengthString[5] = '\0';

 length = atoi(lengthString);

 record = new char[length+1];
 for(i = 11; i < length+11; i++)
 record[i-11] = tre[i];

 // in case, NULL termination is needed
 record[length] = '\0';

9

 }

 void clear()
 { delete [] record; length = 0; name[0] = '\0'; }

 char *record;
 char name[7];
 int length;
};

class TSM_EXPORT_API image
{
public:
 image() { numTREs = 0; imageTREs = NULL; }
 ~image() { delete [] imageTREs; }

 std::string imageSubHeader;
 tre *imageTREs;
 int numTREs;
};

class TSM_EXPORT_API NITF_2_0_ISD : public tsm_ISD
{
public:
 NITF_2_0_ISD()
 { _format = "NITF2.0"; numTREs = 0; numImages = 0;
 fileTREs = NULL; images = NULL; numDESs = 0; fileDESs +NULL; }
 ~NITF_2_0_ISD()
 { delete [] images; delete [] fileTREs; delete[] fileDESs; }

 std::string fileHeader;
 int numTREs;
 tre *fileTREs;
 int numDESs;
 des *fileDESs;
 int numImages;
 image *images;
};

#endif

10

6.2.4 tsm_ISDByteStream.h

//###
//
// FILENAME: tsm_ISDByteStream.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for the ByteStream ISD class derived from the tsm_ISD base class.
// ISD is encapsulated in a C++ class for transfer through the TSM
// interface. This class is designed to hold ISD in a std::string of unspecified
// format. The field _isd is set with the ISD.
//
// LIMITATIONS: None
//
// Date Author Comment
// SOFTWARE HISTORY: 01-Jul-2003 LMT Initial version.
// 06-Feb-2004 KRW Incorporates changes approved by
// January and February 2004
// Configuration control board.
// NOTES:
//
//###
#ifndef __tsm_ISDBYTESTREAM_H
#define __tsm_ISDBYTESTREAM_H

#include "TSMImageSupportData.h"
#include <string>
#include "TSMMisc.h"

class TSM_EXPORT_API bytestreamISD : public tsm_ISD
{
public:
 bytestreamISD() { _format = "BYTESTREAM"; }
 bytestreamISD(std::string filename);
 ~bytestreamISD() {_format.erase(); _isd.erase();}

 std::string _isd;
};

#endif

11

6.2.5 tsm_ISDFilename.h

//###
//
// FILENAME: tsm_ISDFilename.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for the Filename ISD class derived from the tsm_ISD base class.
// ISD is encapsulated in a C++ class for transfer through the TSM
// interface. This class is designed allow a std::string indicating the name
// of a file that contains ISD. The field _filename should be set to the
// full path name of the file.
//
// LIMITATIONS: None
//
// Date Author Comment
// SOFTWARE HISTORY: 01-Jul-2003 LMT Initial version.
// 06-Feb-2004 KRW Incorporates changes approved by
// January and February 2004
// Configuration control board.
// NOTES:
//
//###
#ifndef __tsm_ISDFILENAME_H
#define __tsm_ISDFILENAME_H

#include "TSMImageSupportData.h"
#include <string>
#include "TSMMisc.h"

class TSM_EXPORT_API filenameISD : public tsm_ISD
{
public:
 filenameISD() { _format = "FILENAME"; }
 ~filenameISD() { }

 std::string _filename;
};

#endif

6.3 TSMSensorModel.h

12

//###
//
// FILENAME: TSMSensorModel.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for abstract base class that is to provide a common interface from
// which all Tactical Sensor Model (TSM) plugin models will inherit.
//
// LIMITATIONS: None
//
// Date Author Comment
// SOFTWARE HISTORY: 27-Jun-2003 LMT Initial version.
// 01-Jul-2003 LMT Remove constants, error/warning
// and make methods pure virtual.
// CharType enum.
// 31-Jul-2003 LMT Change calls with a "&" to a "*",
// combined CharType with ParamType
// to create Param_CharType, //reordered
// methods to match API order, added
// systematic error methods.
// 06-Aug-2003 LMT Removed all Characteristic calls.
// 08-Oct 2003 LMT Added getImageSize calls
// 06-Feb-2004 KRW Incorporates changes approved by
// January and February 2004
// configuration control board.
// 30-Jul-2004 PW Initail API 3.1 version
// 01-Nov-2004 KRW October 2004 CCB
// 25-Jan-2005 KRW January 2005 CCB
// NOTES:
//
//###

#ifndef __TSMSENSORMODEL_H
#define __TSMSENSORMODEL_H

#include "TSMMisc.h"
#include "TSMWarning.h"
#include "TSMError.h"
#include “TSMCovariance.h”

class TSM_EXPORT_API TSMSensorModel
{
public:

 //--
 // Constructors/Destructor
 //--

 TSMSensorModel() { }

 virtual ~TSMSensorModel() { }

 //---
 // Modifier
 //--

 //---

13

 // Core Photogrammetry
 //---

 virtual TSMWarning* groundToImage(
 const double& x,
 const double& y,
 const double& z,
 double& line,
 double& sample,
 double& achieved_precision,
 const double& desired_precision = 0.001)
 throw (TSMError) = 0;

 //> The groundToImage() method converts x, y and z (meters) in ground
 // space (ECEF) to line and sample (pixels) in image space.
 //<

 virtual TSMWarning* groundToImage(
 const double& x,
 const double& y,
 const double& z,
 const double groundCovariance[9],
 double& line,
 double& sample,
 double imageCovariance[4],
 double& achieved_precision,
 const double& desired_precision = 0.001)
 throw (TSMError) = 0;

//> This method converts a given ground point into line and sample
 // (pixels) in image space and returns accuracy information
 // associated with the image and ground coordinates.
 //<

 virtual TSMWarning* imageToGround(
 const double& line,
 const double& sample,
 const double& height,
 double& x,
 double& y,
 double& z,
 double& achieved_precision,
 const double& desired_precision = 0.001)
 throw (TSMError) = 0;

//> This method converts a given line and sample (pixels) in image
 // space to a ground point.
 //<

 virtual TSMWarning* imageToGround(
 const double& line,
 const double& sample,
 const double imageCovariance[4],
 const double& height,
 const double& heightVariance,
 double& x,
 double& y,
 double& z,
 double groundCovariance[9],
 double& achieved_precision,
 const double& desired_precision = 0.001)
 throw (TSMError) = 0;

14

 //> This method converts a given line and sample (pixels) in //image space
 // to a ground point and returns accuracy information associated with
 // the image and ground coordinates.
 //<

 virtual TSMWarning* imageToProximateImagingLocus(
 const double& line,
 const double& sample,
 const double& x,
 const double& y,
 const double& z,
 double locus[6],
 double& achieved_precision,
 const double& desired_precision = 0.001)
 throw (TSMError) = 0;

 //> The imageToProximateImagingLocus() method computes a proximate
 // imaging locus, a vector approximation of the imaging locus for the
 // given line and sample nearest the given x, y and z or at the given
 // height. The precision of this calculation refers to the locus's
 // origin and does not refer to the locus's orientation.
 //<

 virtual TSMWarning* imageToRemoteImagingLocus(
 const double& line,
 const double& sample,
 double locus[6],
 double& achieved_precision,
 const double& desired_precision = 0.001)
 throw (TSMError) = 0;

 //> The imageToRemoteImagingLocus() method computes locus, a vector
 // approximation of the imaging locus for the given line and sample.
 // The precision of this calculation refers only to the origin of the
 // locus vector and does not refer to the locus's orientation. For an
 // explanation of the remote imaging locus, see the section at the
 // beginning of this document.
 //<

 //---
 // Uncertainty Propagation
 //---

 virtual TSMWarning* computeGroundPartials(
 const double& x,
 const double& y,
 const double& z,
 double partials[6])
 throw (TSMError) = 0;

 //> The computeGroundPartials method calculates the partial
 // derivatives (partials) of image position (both line and sample)
 // with respect to ground coordinates at the given ground
 // position x, y, z.
 // Upon successful completion, computeGroundPartials() produces the
 // partial derivatives as follows:
 //
 // partials [0] = line wrt x
 // partials [1] = line wrt y
 // partials [2] = line wrt z
 // partials [3] = sample wrt x
 // partials [4] = sample wrt y

15

 // partials [5] = sample wrt z
 //<

 virtual TSMWarning* computeSensorPartials(
 const int& index,
 const double& x,
 const double& y,
 const double& z,
 double& line_partial,
 double& sample_partial,
 double& achieved_precision,
 const double& desired_precision = 0.001)
 throw (TSMError) = 0;

 virtual TSMWarning* computeSensorPartials(
 const int& index,
 const double& line,
 const double& sample,
 const double& x,
 const double& y,
 const double& z,
 double& line_partial,
 double& sample_partial,
 double& achieved_precision,
 const double& desired_precision = 0.001)
 throw (TSMError) = 0;

 //> The computeSensorPartials() method calculates the partial
 // derivatives of image position (both line and sample) with
 // respect to the given sensor parameter (index) at the given
 // ground position.
 // Two versions of the method are provided. The first method,
 // computeSensorPartials(), takes in only necessary information.
 // It performs groundToImage() on the ground coordinate and then
 // calls the second form of the method with the obtained line
 // and sample. If the calling function has already performed
 // groundToImage with the ground coordinate, it may call the second
 // method directly since it may be significantly faster than the
 // first. The results are unpredictable if the line and sample
 // provided do not correspond to the result of calling // //groundToImage()
 // with the given ground position (x, y, and z).
 //<

 virtual TSMWarning* getCurrentParameterCovariance(
 const int& index1,
 const int& index2,
 double& covariance)
 throw (TSMError) = 0;

 //> The getCurrentParameterCovariance() method
 // returns the covariance of the specified parameter pair
 // (index1, index2). The variance of the given parameter can be
 // obtained by using the same value for index1 and index2.

 virtual TSMWarning* setCurrentParameterCovariance(
 const int& index1,
 const int& index2,
 const double& covariance)
 throw (TSMError) = 0;

 // The setCurrentParameterCovariance() method is
 // used to set the covariance value of the specified parameter pair.

16

 //<

 virtual TSMWarning* setOriginalParameterCovariance(
 const int& index1,
 const int& index2,
 const double& covariance)
 throw (TSMError) = 0;

 virtual TSMWarning* getOriginalParameterCovariance(
 const int& index1,
 const int& index2,
 double& covariance)
 throw (TSMError) = 0;

 //> The first form of originalParameterCovariance() method sets
 // the covariance of the specified parameter pair (index1, index2).
 // The variance of the given parameter can be set using the same
 // value for index1 and index2.
 // The second form of originalParameterCovariance() method gets
 // the covariance of the specified parameter pair (index1, index2).
 // The variance of the given parameter can be obtained using the
 // same value for index1 and index2.
 //<

 //---
 // Time and Trajectory
 //---

 virtual TSMWarning* getTrajectoryIdentifier(
 std::string &trajectoryId)
 throw (TSMError) = 0;

 //> This method returns a unique identifer to indicate which
 // trajectory was used to acquire the image. This ID is unique for
 // each sensor type on an individual path.
 //<

 virtual TSMWarning* getReferenceDateAndTime(
 std::string &date_and_time)
 throw (TSMError) = 0;

 //> This method returns the time in seconds at which the specified
 // pixel was imaged. The time provide is relative to the reference
 // date and time given by the getReferenceDateAndTime() method and
 // can be used to represent time offsets within the trajectory
 // associated with the given image.
 //<

 virtual TSMWarning* getImageTime(
 const double& line,
 const double& sample,
 double& time)
 throw (TSMError) = 0;

 //> The getImageTime() method returns the time in seconds at which
 // the pixel specified by line and sample was imaged. The time
 // provided is relative to the reference date and time given by
 // getReferenceDateAndTime.
 //<

 virtual TSMWarning* getSensorPosition(
 const double& line,

17

 const double& sample,
 double& x,
 double& y,
 double& z)
 throw (TSMError) = 0;

 virtual TSMWarning* getSensorPosition(
 const double& time,
 double& x,
 double& y,
 double& z)
 throw (TSMError) = 0;

 //> The getSensorPosition() method returns the position of
 // the physical sensor at the given position in the image.
 //<

 virtual TSMWarning* getSensorVelocity(
 const double& line,
 const double& sample,
 double& vx,
 double& vy,
 double &vz)
 throw (TSMError) = 0;

 virtual TSMWarning* getSensorVelocity(
 const double& time,
 double& vx,
 double& vy,
 double& vz)
 throw (TSMError) = 0;

 //> The getSensorVelocity() method returns the velocity
 // of the physical sensor at the given position in the image.
 //<

 //---
 // Sensor Model Parameters
 //---

 virtual TSMWarning* setCurrentParameterValue(
 const int& index,
 const double& value)
 throw (TSMError) = 0;

 //> The setCurrentParameterValue() is used to set the
 // value of the adjustable parameter indicated by index.

 virtual TSMWarning* getCurrentParameterValue(
 const int& index,
 double& value)
 throw (TSMError) = 0;

 //
 // The getCurrentParameterValue()returns the value
 // of the adjustable parameter given by index.
 //<

 virtual TSMWarning* getParameterName(
 const int& index,
 std::string& name)
 throw (TSMError) = 0;

18

 //> This method returns the name for the sensor model parameter
 // indicated by the given index.
 //<

 virtual TSMWarning* getNumParameters(
 int& numParams)
 throw (TSMError) = 0;

 //> This method returns the number of sensor model parameters.
 //<

 virtual TSMWarning* setOriginalParameterValue(
 const int& index,
 const double& value)
 throw (TSMError) = 0;

 //> The setOriginalParameterValue() method is
 //> used to set the original parameter value of the indexed
 //> parameter and to set the parameter type indicated by
 //> parameterType.

virtual TSMWarning* getOriginalParameterValue(
 const int& index,
 double& value)
 throw (TSMError) = 0;

 //> The getOriginalParameterValue() method
 //> returns the value of the adjustable parameter given by
 //> index.
 //<

 virtual TSMWarning* getParameterType(
 const int& index,
 TSMMisc::Param_CharType &pType)
 throw (TSMError) = 0;

 //> The getParameterType() method returns the type of the parameter
 //> given by index.
 //<

 virtual TSMWarning* setParameterType (
 const int& index,
 const TSMMisc::Param_CharType& pType)
 throw (TSMError) +0;

//> The setParameterType() method sets the parameter type
 // of the parameter given by index
 //<

 //---
 // Sensor Model Information
 //---

 virtual TSMWarning* getPedigree(
 std::string &pedigree)
 throw (TSMError) = 0;

 //> The getPedigree() method returns a character std::string that
 // identifies the sensor, the model type, its mode of acquisition
 // and processing path. For example, an image that could produce
 // either an optical sensor model or a cubic rational polynomial
 // model would produce different pedigrees for each case.

19

 //<

 virtual TSMWarning* getImageIdentifier(
 std::string &imageId)
 throw (TSMError) = 0;

 //> This method returns the unique identifier to indicate the imaging
 // operation associated with this sensor model.
 //<

 virtual TSMWarning* setImageIdentifier(
 const std::string &imageId)
 throw (TSMError) = 0;

 //> This method sets the unique identifier for the image to which the
 // sensor model pertains.
 //<

 virtual TSMWarning* getSensorIdentifier(
 std::string &sensorId)
 throw (TSMError) = 0;

 //> The getSensorIdentifier() method returns sensorId to indicate
 // which sensor was used to acquire the image. This sensorId is
 // meant to uniquely identify the sensor used to make the image.
 //<

 virtual TSMWarning* getPlatformIdentifier(
 std::string &platformId)
 throw (TSMError) = 0;

//> The getPlatformIdentifier() method returns platformId to indicate
// which platform was used to acquire the image. This platformId
// is meant to uniquely identify the platform used to collect the // //image.
 //<

 virtual TSMWarning* setReferencePoint(
 const double &x,
 const double &y,
 const double &z)
 throw (TSMError) = 0;

//> This method returns the ground point indicating the general
// location
// of the image.
 //<

 virtual TSMWarning* getReferencePoint(
 double &x,
 double &y,
 double &z)
 throw (TSMError) = 0;

 //> This method sets the ground point indicating the general location
 // of the image.
 //<

 virtual TSMWarning* getSensorModelName(
 std::string &name)
 throw (TSMError) = 0;

//> This method returns a string identifying the name of the //senor model.

20

 //<

 virtual TSMWarning* getImageSize(
 int& num_lines,
 int& num_samples)
 throw (TSMError) = 0;

 //> This method returns the number of lines and samples in the imaging
 // operation.
 //<

 //---
 // Sensor Model State
 //---

 virtual TSMWarning* getSensorModelState(
 std::string& state)
 throw (TSMError) = 0;

 //> This method returns the current state of the model in an
 // intermediate form. This intermediate form can then processed,
 // for example, by saving to file so that this model
 // can be instantiated at a later date. The derived SensorModel
 // is responsible for saving all information needed to restore
 // itself to its current state from this intermediate form.
 // A NULL pointer is returned if it is not possible to save the
 // current state.
 //<

 //---
 // Monoscopic Mensuration
 //---

 virtual TSMWarning* getValidAltitudeRange(
 double& minAltitude,
 double& maxAltitude)
throw (TSMError) = 0;

 //> The validAltitudeRange() method returns the minimum and maximum
 // altitudes that describe the range of validity of the model. For
 // example, the model may not be valid at altitudes above the altitude
 // of the sensor for physical models.
 //<

 virtual TSMWarning* getIlluminationDirection(
 const double& x,
 const double& y,
 const double& z,
 double& direction_x,
 double& direction_y,
 double& direction_z)
 throw (TSMError) = 0;

 //> The getIlluminationDirection() method calculates the direction of
 // illumination at the given ground position x, y, z.
 //<

 //---
 // Error Correction
 //---

 virtual TSMWarning* getNumSystematicErrorCorrections(

21

 int& numSec)
 throw (TSMError) = 0;

 //> The numSystematicErrorCorrections() method returns the number
 // of systematic error corrections defined for the sensor model.
 //<

 virtual TSMWarning* getSystematicErrorCorrectionName(
 const int& index,
 std::string &name)
 throw (TSMError) = 0;

 //> This method returns the name for the sensor model parameter
 // indicated by the given index.
 //<

 virtual TSMWarning* setCurrentSystematicErrorCorrectionSwitch(
 const int& index,
 const bool &value,
 const TSMMisc::Param_CharType& parameterType)
 throw (TSMError) = 0;

 //> The setCurrentSystematicErrorCorrectionSwitch() is
 // used to set the switch of the systematic error correction
 // indicated by index.

 virtual TSMWarning* getCurrentSystematicErrorCorrectionSwitch(
 const int& index,
 bool &value)
 throw (TSMError) = 0;

 //
 // The getCurrentSystematicErrorCorrectionSwitch()
 // returns the value of the systematic error correction switch
 // given by index.
 //<
 virtual TSMWarning* getCovarianceModel (
 tsm_CovarianceModel*& covModel)
 throw (TSMError) = 0;

 //
 //
 //

 virtual TSMWarning* getUnmodeledError(

const double line,
const double sample,
double covariance[4])

 throw (TSMError) = 0;

//
 //
 //
 virtual TSMWarning* getUnmodeledCrossCovariance (

const double pt1Line,
const double pt1Sample,
const double pt2Line,
const double pt2Sample,
double crossCovariance[4])

 throw (TSMError) = 0;

 //
 //

22

 //

 virtual TSMWarning* getCollectionIdentifier(
 std::string& collectionId)
 throw (TSMError) = 0;

 //
 //
 //

virtual TSMWarning* isParameterShareable(
 const int& index,
 bool& shareable)
 throw (TSMError) = 0;

 //
 //
 //

virtual TSMWarning* getParameterSharingCriteria(
 const int& index,

 bool& requireModelNameMatch,
 bool& requireSensorIDMatch,
 bool& requirePlatformIDMatch,
 bool& requireCollectionIDMatch,
 bool& requireTrajectoryIDMatch,
 bool& requireDateTimeMatch,
 double& allowableTimeDelta)

 throw (TSMError) = 0;

};

#endif

23

6.4 TSM Warnings and Errors

6.4.1 TSM Warning

//##
//
// FILENAME: TSMWarning.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for the warning structure used by the TSM.
//
// LIMITATIONS: None
//
// Date Author Comment
// SOFTWARE HISTORY: 1 June 2004 Kevin Lam CCB Change
//
// NOTES:
//
//###

#ifndef __TSMWARNING_H
#define __TSMWARNING_H

#include <string>
#include "TSMMisc.h"

class TSM_EXPORT_API TSMWarning
{
 public:

 //---
 // Warnings
 //---

 enum WarningType
 {
 UNKNOWN_WARNING = 1,
 DATA_NOT_AVAILABLE,
 PRECISION_NOT_MET,
 NEGATIVE_PRECISION,
 IMAGE_COORD_OUT_OF_BOUNDS,
 IMAGE_ID_TOO_LONG,
 NO_INTERSECTION
 };

 TSMWarning()
 {
 }

 TSMWarning(
 const WarningType& aWarningType,
 const std::string& aMessage,
 const std::string& aFunction)
 {
 setTSMWarning(aWarningType, aMessage, aFunction);
 }

24

 WarningType getWarning() { return theWarning; }
 const std::string& getMessage() { return theMessage; }
 const std::string& getFunction() { return theFunction; }

 void setTSMWarning(
 const WarningType& aWarningType,
 const std::string& aMessage,
 const std::string& aFunction)
 {
 theWarning = aWarningType;
 theMessage = aMessage;
 theFunction = aFunction;
 }

 private:

 WarningType theWarning;
 //> enumeration of the warning (for application control),
 //<
 std::string theMessage;
 //> string describing the warning.
 //<
 std::string theFunction;
 //> string identifying the function in which the warning occurred.
 //<
};

#endif // __TSMWARNING_H

25

6.4.2 TSM Error

//##
//
// FILENAME: TSMError.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for the error structure used by the TSM.
//
// LIMITATIONS: None
//
// Date Author Comment
// SOFTWARE HISTORY: 1 June 2004 Kevin Lam CCB Change
//
// NOTES:
//
//###

#ifndef __TSMERROR_H
#define __TSMERROR_H

#include <string>
#include "TSMMisc.h"

class TSM_EXPORT_API TSMError
{
 public:

 //---
 // Errors
 //---

 enum ErrorType
 {
 ALGORITHM = 1,
 BOUNDS,
 FILE_READ,
 FILE_WRITE,
 ILLEGAL_MATH_OPERATION,
 INDEX_OUT_OF_RANGE,
 INVALID_SENSOR_MODEL_STATE,
 INVALID_USE,
 ISD_NOT_SUPPORTED,
 MEMORY,
 SENSOR_MODEL_NOT_CONSTRUCTIBLE,
 SENSOR_MODEL_NOT_SUPPORTED,
 STRING_TOO_LONG,
 UNKNOWN_ERROR,
 UNSUPPORTED_FUNCTION,
 UNKNOWN_SUPPORT_DATA
 };

 TSMError()
 {
 }

 TSMError(

26

 const ErrorType& aErrorType,
 const std::string& aMessage,
 const std::string& aFunction)
 {
 setTSMError(aErrorType, aMessage, aFunction);
 }

 ErrorType getError() { return theError; }
 const std::string& getMessage() { return theMessage; }
 const std::string& getFunction() { return theFunction; }

 void setTSMError(
 const ErrorType& aErrorType,
 const std::string& aMessage,
 const std::string& aFunction)
 {
 theError = aErrorType;
 theMessage = aMessage;
 theFunction = aFunction;
 }

 private:

 ErrorType theError;
 //> enumeration of the error (for application control),
 //<
 std::string theMessage;
 //> string describing the error.
 //<
 std::string theFunction;
 //> string identifying the function in which the error occurred.
 //<
};

#endif // __TSMERROR_H

27

6.5 TSMMisc

//###
//
// FILENAME: TSMMisc.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for the constants and other definitions used by the TSM.
//
// LIMITATIONS: None
//
// Date Author Comment
// SOFTWARE HISTORY: 01-Jul-2003 LMT Initial version.
//
// NOTES:
//
//###
#ifndef __TSMMISC_H
#define __TSMMISC_H
#ifdef _WIN32
ifdef TSM_LIBRARY
define TSM_EXPORT_API __declspec(dllexport)
else
define TSM_EXPORT_API __declspec(dllimport)
endif
#else
define TSM_EXPORT_API
#endif

 static const int MAX_NAME_LENGTH = 40;
 static const int MAX_FUNCTION_NAME_LENGTH = 80;
 static const int MAX_MESSAGE_LENGTH = 512;

class TSM_EXPORT_API TSMMisc
{
 public:

//--
// Enumeratons
//--
 enum Param_CharType
{ NONE,
 FICTITIOUS,
 REAL,
 EXACT };
//>
// This enumeration lists the possible parameter or characteristic
// types as follows.
//
// NONE - Parameter value has not yet been initialized.
// FICTITIOUS - Parameter value has been calculated by resection
// or other means.
// REAL - Parameter value has been measured or read from
// support data.

28

// EXACT - Parameter value has been specified and is assumed to
// have no uncertainty.
//<

};

#endif

29

6.6 TSMCovarianceModel
//###
//
// FILENAME: TSMCovarianceModel.h
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// Header for the constants and other definitions used by the TSM.
//
// LIMITATIONS: None
//
// Date Author Comment
// SOFTWARE HISTORY: 1 Nov 2004 KL Initial version.
//
// NOTES:
//
//###

#ifndef __TSMCOVARIANCE_MODEL_H
#define __TSMCOVARIANCE_MODEL_H

#include <string>
#include "TSMMisc.h"

class TSM_EXPORT_API tsm_CovarianceModel
{
public:
 tsm_CovarianceModel () { _format = "UNKNOWN"; }
 virtual ~tsm_CovarianceModel (){ _format.erase(); }

 void getFormat(std::string &format) const { format = _format; }

protected:

 std::string _format;

};

#endif

1

7 APPENDIX B ADDITIONAL EXPLANATION OF
EXPORT SYMBOLS FOR WINDOWS BUILDS

7.1 Introduction

This section explains the purpose of the "…_EXPORT_API" identifier found in the
configured include files. Note that the following discussion applies only to Win32
platforms. By examining the logic in TSMMisc.h it can easily be seen that the symbols
mentioned above evaluate to nothing on non-Win32 platforms.

7.2 Discussion

When creating a dynamic-link library (DLL), no symbol is marked for export by default.
In effect, this hides the symbol in the DLL from any other DLL or application
("deliverable") that uses the DLL. This can be advantageous if multiple deliverables
define the same symbol, as there will be no ambiguity of symbol references.
On the other hand, a DLL is not useful at all if it has no symbols marked for export.
Therefore, when including a header file whose implementation is part of the currently-
developed DLL, the preferred practice is to mark functions and data members of the
public interface for export.

 class Hello
 {
 public:
 void __declspec(dllexport) printHello();

 private:
 void writeToScreen(const char*);
 };

Furthermore, for every deliverable that uses that header file in its own code, those
symbols need to be marked for import.

 class Hello
 {
 public:
 void __declspec(dllimport) printHello();

 private:
 void writeToScreen(const char*);
 };

In addition, as stated above, on non-Win32 platforms, this is irrelevant and no marking
needs to be done.

 class Hello

2

 {
 public:
 void printHello();

 private:
 void writeToScreen(const char*);
 };

Note the similarities in the code above. For a particular DLL, only the __declspec
qualifier needs to be changed for the various circumstances. Thus, we utilize the
preprocessor for help:

 #ifdef _WIN32
 # ifdef HELLO_LIBRARY
 # define HELLO_EXPORT_API __declspec(dllexport)
 # else
 # define HELLO_EXPORT_API __declspec(dllimport)
 # endif
 #else
 # define HELLO_EXPORT_API
 #endif

This will expand HELLO_EXPORT_API to the appropriate __declspec symbol only if it is
compiled on a Win32 platform. When building the library, the code is compiled with
HELLO_LIBRARY defined, possibly by placing the following in the source file for this class.

 // -- Hello.cpp
 #define HELLO_LIBRARY
 #include "Hello.h"

Defining HELLO_LIBRARY causes HELLO_EXPORT_API to expand to
__declspec(dllexport), as it should when building the DLL; otherwise, it will expand to
__declspec(dllimport), as it should when building any deliverable that uses the DLL.

The following link has more information:
 http://msdn.microsoft.com/library/default.asp?
 url=/library/en-us/vccore98/html/
 _core_using___declspec.28.dllimport.29_.and___declspec.28.dllexport.29.asp

1

8 APPENDIX C COMPILING

8.1 Sun Solaris Forte or Workshop compiler:

For compiling the shared object (.so) source files to an object files (.o), the -c -KPIC –G
–o switches are used. For compiling the .o files to .so files, the -G -KPIC –G –o
switches are used. The -G switch directs the link editor to produce a shared object. The
-KPIC switch emits position-independent code, suitable for dynamic linking and avoiding
any limit on the size of the global offset table. The –G switch includes all debugging
symbols and is recommended for debugging/developer builds only, not for releases.

For example:
CC -c -KPIC -G StubSMPlugin.cpp -o StubSMPlugin.o
CC -c -KPIC -G StubSensorModel.cpp -o StubSensorModel.o
CC -G -KPIC -G StubSMPlugin.o StubSensorModel.o -o StubSMPlugin.so

For compiling the main application source files to object files, the -c –g –o switches are
used.

For example:
CC -c -G vts.cpp -o vts.o

To link the main application object to produce an executable, the –o –ldl switches are
used. The -l switch causes the link editor to look for files named libdl.a or libdl.so, the
shared object handling library, in the library search path.

For example:
CC vts.o SMManager.o TSMPlugin.o -o vts -ldl

2

The following is an example Makefile that produces an executable called vts and three
shared object files called FunSMFactory.so, ExampleSMPlugin.so and
StubSMPlugin.so.

###

FILENAME: Makefile

DESCRIPTION:

This Makefile is used by make to build the vts application and
example plugins on Solaris using the WorkShop/Forte CC compiler.

NOTES:

###

#CXX = /apps/sun_studio_8/SUNWspro/bin/CC
CXX = CC

The flags needed to compile all
CXXFLAGS = -PIC -g

we need to link in the dll handling library

LDLIBS = -ldl -lCstd

#--
--
all : FunSMFactory.so ExampleSMPlugin.so StubSMPlugin.so vts

the main executable has to be linked with the -rdynamic flag
so the plug in libraries can call inherited methods and
access vtables in the main executable.

#--
--
vts : vts.o SMManager.o TSMPlugin.o compareParam.o recordLog.o TSMNITF20.o
TSMNITF21.o \
 TSMISDBytestream.o
 $(CXX) vts.o SMManager.o TSMPlugin.o compareParam.o \
 recordLog.o TSMNITF20.o TSMNITF21.o TSMISDBytestream.o \
 -o vts $(LDLIBS) -Lnitf2.1 -lnitf

-rdynamic

link the shared libraries with the -shared flag.

FunSMFactory.so : FunSMFactory.o
 $(CXX) -G $(CXXFLAGS) FunSMFactory.o -o FunSMFactory.so

3

ExampleSMPlugin.so : ExampleSMPlugin.o ExampleSensorModel.o
 $(CXX) -G $(CXXFLAGS) ExampleSMPlugin.o ExampleSensorModel.o -o
ExampleSMPlugin.so

StubSMPlugin.so : StubSMPlugin.o StubSensorModel.o
 $(CXX) -G $(CXXFLAGS) StubSMPlugin.o StubSensorModel.o -o
StubSMPlugin.so

#--
--
FunSMFactory.o : FunSMFactory.cpp TSMPlugin.h TSMError.h TSMWarning.h
TSMMisc.h FunSMFactory.h
 $(CXX) -c -PIC -g FunSMFactory.cpp -o FunSMFactory.o

#--
--
ExampleSMPlugin.o : ExampleSMPlugin.cpp TSMPlugin.h TSMError.h TSMWarning.h
TSMMisc.h \
 ExampleSMPlugin.h ExampleSensorModel.h
 $(CXX) -c -PIC -g ExampleSMPlugin.cpp -o ExampleSMPlugin.o

#--
--
ExampleSensorModel.o : ExampleSensorModel.cpp TSMSensorModel.h
ExampleSensorModel.h
 $(CXX) -c -PIC -g ExampleSensorModel.cpp -o ExampleSensorModel.o

#--
--
StubSMPlugin.o : StubSMPlugin.cpp TSMPlugin.h TSMError.h TSMWarning.h
TSMMisc.h StubSMPlugin.h \
 StubSensorModel.h
 $(CXX) -c -PIC -g StubSMPlugin.cpp -o StubSMPlugin.o

#--
--
StubSensorModel.o : StubSensorModel.cpp TSMSensorModel.h StubSensorModel.h
VTSMisc.h
 $(CXX) -c -PIC -g StubSensorModel.cpp -o StubSensorModel.o

#--
--
vts.o : vts.cpp SMManager.h TSMPlugin.h TSMError.h TSMWarning.h
TSMSensorModel.h \
 VTSMisc.h TSMImageSupportData.h TSMISDNITF20.h TSMISDNITF21.h
TSMImageSupportData.h \
 TSMNITF20.h
 $(CXX) -c -g vts.cpp -o vts.o

SMManager.o : SMManager.cpp SMManager.h TSMPlugin.h TSMError.h
TSMWarning.h
 $(CXX) -c -g SMManager.cpp -o SMManager.o

TSMPlugin.o : TSMPlugin.cpp TSMError.h TSMWarning.h TSMMisc.h TSMPlugin.h
 $(CXX) -c -g TSMPlugin.cpp -o TSMPlugin.o

compareParam.o : compareParam.cpp TSMMisc.h VTSMisc.h

4

 $(CXX) -c -g compareParam.cpp -o compareParam.o

recordLog.o : recordLog.cpp VTSMisc.h
 $(CXX) -c -g recordLog.cpp -o recordLog.o

TSMNITF20.o : TSMNITF20.cpp TSMImageSupportData.h TSMISDNITF20.h
TSMNITF20.h
 $(CXX) -c -g TSMNITF20.cpp -o TSMNITF20.o

TSMNITF21.o : TSMNITF21.cpp TSMImageSupportData.h TSMISDNITF20.h
TSMNITF20.h \
 TSMISDNITF21.h TSMNITF21.h
 $(CXX) -c -g -Initf2.1 TSMNITF21.cpp -o TSMNITF21.o

TSMISDBytestream.o : TSMISDBytestream.cpp TSMISDByteStream.h
 $(CXX) -c -g -Iinclude TSMISDBytestream.cpp -o TSMISDBytestream.o

TSMISDNITF20.o : TSMISDNITF20.cpp TSMISDNITF20.h TSMMisc.h
 $(CXX) -c -g TSMISDNITF20.cpp -o TSMISDNITF20.o

#--
--
clean :
 -rm -f *.o vts *.so *~
 -rm -rf SunWS_cache

8.2 GCC compiler:

For compiling the shared object (.so) source files to an object files (.o), the –Wall -fPIC -
c –o switches are used. For compiling the .o files to .so files the -Wall –o switches are
used. The –Wall switch turns on all the warning messages. The -fPIC switch emits
position-independent code, suitable for dynamic linking and avoiding any limit on the
size of the global offset table.

For compiling the main application source files to object files the –Wall –c –o switches
are used.

To link the main application object to produce an executable the –Wall –o –ldl switches
are used. The -l switch causes the link editor to look for files named libdl.a or libdl.so,
the shared object handling library, in the library search path.

The following is an example Makefile that produces an executable called vts and three
shared object files called FunSMFactory.so, ExampleSMPlugin.so and
StubSMPlugin.so.

5

FILENAME: Makefile_gcc

DESCRIPTION:

This Makefile is used by make to build the vts_gcc application and
example plugins on Solaris using the GNU C++ compiler.

NOTES:

CCC = g++
RM = /bin/rm -f

CCFLAGS = -Initf2.1 -g -Wall
CSHAREDFLAGS = -shared

EXEC = vts
LIB1 = FunSMFactory
LIB2 = ExampleSMPlugin
LIB3 = StubSMPlugin

EXEC_SRCS = \
 vts.cpp \
 SMManager.cpp \
 TSMPlugin.cpp \
 TSMISDBytestream.cpp \
 TSMNITF20.cpp \
 TSMNITF21.cpp \
 TSMISDNITF20.cpp \
 recordLog.cpp \
 compareParam.cpp

LIB1_SRCS = \
 FunSMFactory.cpp

LIB2_SRCS = \
 ExampleSMPlugin.cpp \
 ExampleSensorModel.cpp

LIB3_SRCS = \
 StubSMPlugin.cpp \
 StubSensorModel.cpp

EXEC_LIBPATHS = nitf2.1

EXEC_DYNLIBS = \
 dl

#--
--
EXEC_FIL = $(EXEC:%=%_gcc)
LIB1_FIL = $(LIB1:%=lib%_gcc.so)
LIB2_FIL = $(LIB2:%=lib%_gcc.so)
LIB3_FIL = $(LIB3:%=lib%_gcc.so)

6

EXEC_OBJS = $(EXEC_SRCS:%.cpp=%.o)
LIB1_OBJS = $(LIB1_SRCS:%.cpp=%.shared.o)
LIB2_OBJS = $(LIB2_SRCS:%.cpp=%.shared.o)
LIB3_OBJS = $(LIB3_SRCS:%.cpp=%.shared.o)

EXEC_LIBS = $(EXEC_LIBPATHS:%=-L%) $(EXEC_DYNLIBS:%=-l%) -lnitf_gcc

#--
--
all: $(EXEC_FIL) $(LIB1_FIL) $(LIB2_FIL) $(LIB3_FIL)

#--
--
vts_gcc.o: vts.cpp
 g++ -Initf2.1 -c vts.cpp

$(EXEC_FIL): $(EXEC_MAIN) $(EXEC_OBJS)
 $(CCC) $(CCFLAGS) -o $@ $(EXEC_OBJS) $(EXEC_LIBS)

$(LIB1_FIL): $(LIB1_OBJS)
 $(CCC) $(CSHAREDFLAGS) $(CCFLAGS) -o $@ $(LIB1_OBJS)

$(LIB2_FIL): $(LIB2_OBJS)
 $(CCC) $(CSHAREDFLAGS) $(CCFLAGS) -o $@ $(LIB2_OBJS)

$(LIB3_FIL): $(LIB3_OBJS)
 $(CCC) $(CSHAREDFLAGS) $(CCFLAGS) -o $@ $(LIB3_OBJS)

#--
--
%.o: %.cpp
 $(CCC) $(CCFLAGS) -c $<

%.shared.o: %.cpp
 $(CCC) $(CCFLAGS) -fPIC -c -o $@ $<

#--
--
clean:
 $(RM) -f \
 $(EXEC_FIL) $(LIB1_FIL) $(LIB2_FIL) $(LIB_FIL) \
 $(EXEC_OBJS) $(LIB1_OBJS) $(LIB2_OBJS) $(LIB3_OBJS)*

8.3 Instructions for compiling and testing in Microsoft Windows:

For building under Microsoft Windows, the current standard of the CSM requires that
Visual Studio .NET, Visual Studio .NET 2003 and Visual Studio .NET 2005 be used for
the API build. Due to changes in memory management between these compilers, a DLL
must be produced by each compiler in order to work with SETs developed under these
compilers. Additionally, a 64-bit DLL shall be produced using the Visual Studio .NET
2005 compiler. It is also assumed that the person responsible for building is familiar with
the operation of this software.

7

The VS.NET environment requires that project files be used to define build. A complete
set of project files has been developed for building and testing CSM and the VTS
(Virtual Test System) test bed application. In addition, example project files are
included for several sample plugins and models. All of the information necessary for
defining and building the project, soln and proj files, is supplied with the distribution
Project files are fairly complex and fairly easy to break if edited by hand. The
environment, VS.NET, provides a very powerful facility for editing these files and for this
reason the contents of these files will not be listed here.
The steps needed to gain access to the project files from within the environment will be
described. Knowledgeable users will be able to modify the project files as necessary.
This system has been tested with XP-Professional and -Home and with Windows 2000.
For this release, the locations of the components on the system have been hard-coded
into the project files. It is anticipated that in future releases, the locations will be given
as environment variables to make the project files, data, etc. easier to relocate.
This distribution assumes that the tree is rooted directly under C:\ and is named TSM. If
you extract the enclosed zip file into C:\ you will get a useable tree (the tree is described
below).
After installing (unzipping) the tree, start VS.NET if not already running. In VS.NET
Open the solution file tsm_test.sln in C:\TSM\TSM. This in turn will locate all of the
other project files, sources, etc and load them. You may do builds at either the global
tsm_test level or each of its projects.
Visual Studio.NET 2003 requires that all of the components of a build be either debug or
release. If the build is mixed with some components release and some debug, an error
message will be displayed at link time about a corrupt file. You must change the build
to debug or release in both the tsm_test.soln and in the individual project files.
VS.NET also requires that all components of a build have the same versions of the
runtime library, rtl. Specifically, the rtl you specify for your model must match the rtl
version for TSMAPI and for the VTS. As we are dealing with a multi-threaded
application and dynamic libraries, all component builds must use the MD version of the
rtl. A method for setting these parameters is described below FAQ 1.1.5.1).
Note that VTS does NOT depend on anything but the TSMAPI library.
It will greatly improve the efficiency of testing models at the integrator if both a debug
and release versions of the model are provided. The release version will be used for
testing – the debug version will be used for diagnosing integration problems between
the model and VTS.

8.3.1 The Application Project vts

The ‘application’ project, vts, is the only executable in the system. It is a command-line
based program that is designed to test all of the functionality of a model. Once you
have done a build, you may run it from a command line window by changing directories
to c:\tsm\bin and typing vts. You may now type in responses to the prompts. You may

8

also run vts non-interactively with a preprogrammed script file by redirecting a script to
stdin, thus

 vts < test_script

A large collection of test scripts is included with the distribution in the bin directory.

Of course, if you build the solution for debug you may set the script filename as the
value of the command line in the properties pages for vts. You will then be able to run
vts with that script in the debugger.

Note that using vts is optional. It may be replaced by whatever model testing software
you prefer.

8.3.2 The TSMAPI Project

The TSMAPI library project is the only project in the solution that is required by other
objects including your model. It contains the configured code described in this manual.
No changes should be made to this code without the consent of the CCB. The system
solution file automatically builds this, if necessary, before any of the other components
of the solution.
Every other component of the VTS system depends on the TSMAPI library. For this
reason the output file must have the same name in all of the builds, TSMAPI.dll.

8.3.3 The Plugin Project

The StubSensorModel is provided with this distribution. The integrator uses this to test
VTS to verify that it functions with a simple standard model conforming to the API The
source code for this project also makes a good example of how to write a conforming
model.

8.3.4 TSM File Tree

C:\TSM\

C:\TSM\bin\

 Multiple test script files

 Libraries and Executables

C:\TSM\StubSMPlugin\

9

 StubSensorModel.cpp

 StubSensorModel.h

 StubSMPlugin.cpp

 StubSMPlugin.h

 StubSMPlugin.vcproj

C:\TSM\TSM\

 TSMAPI.vcproj

 TSMPlugin.cpp

 TSM_test.ncb

 TSM_test.sln

 TSM_test.suo

C:\TSM\TSM_include\

 TSMError.h

 TSMImageSupportData.h

 TSMISDByteStream.h

 TSMISDFilename.h

 TSMISDNITF20.h

 TSMISDNITF21.h

 TSMMisc.h

 TSMPlugin.h

 TSMSensorModel.h

 TSMWarning.h

10

C:\TSM\vts\

 compareParam.cpp

 recordLog.cpp

 SMManager.cpp

 vts.cpp

 vts.vcproj

 vts_isd.cpp

 vts_misc.cpp

C:\TSM\vts_include\

 SMManager.h

 VTSMisc.h

 vts_isd.h

8.3.5 Frequently Asked Questions

8.3.5.1 Why does our model fail to read properly from stdin?

When VTS does console I/O it uses the crt provided by Microsoft. If the model
also does console I/O it links in its own crt. As the program transitions from VTS
to the model it loses sync because of the two instances of the cin object. The
way to fix this is to change the VTS linker properties so it is also a dll.

To set this linker option in the Visual Studio development environment

1. Open the VTS project's Property Pages dialog box. Click the C/C++ folder.

2. Click the Code Generation property page.

3. Modify the Runtime Library property to add dll to the existing property(ies).

8.3.5.2 Why does a build fail with the message: “Fatal Error: Invalid or corrupt file”
when trying to load or link our model?

This can happen when the model is built with a different version of the Runtime
library (rtl) than TSMAPI and VTS. Either change the rtl version for VTS and

11

TSMAPI (see 1.1.5.1 for how to do this) and recompile or recompile your model
with the same version of rtl as VTS and TSMAPI.

8.3.5.3 Why does the debug version generate a heap/stack error?

VTS when run in debug can fail on a heap or stack error. This may be corrected
by adding a value for heap/stack size to the VTS debug properties. The default
heap size is 1 MB.

To set this linker option in the Visual Studio development environment

1. Open the VTS project's Property Pages dialog box. Click the Linker folder.

2. Click the System property page.

3. Modify the Heap Commit Size property.

You may also alter the stack values on this page. The unit is bytes.

8.3.5.4 Why doesn’t our model “register” in the main program?

This is usually caused by compiling the model with a different rtl than the main
program. Please contact the integrator for further assistance if necessary.

1

9 APPENDIX D EXAMPLE CPP FILES

9.1 TSMPlugin.cpp

//###
//
// FILENAME: TSMPlugin.cpp
//
// DESCRIPTION:
//
// This file provides implementation for methods declared in the
// TSMPlugin class.
//
// NOTES:
//
//
// Refer to TSMPlugin.h for more information.
//
//###
#define TSM_LIBRARY

#include <algorithm>
#include <iostream>

#ifdef _WIN32 //exports the symbols to be used (KJR)
include <windows.h>
include "TSMPlugin.h"
include "TSMSensorModel.h"
include "TSMFilename.h"
include "TSMISDByteStream.h"
include "TSMNITF20.h"
#else
include <pthread.h>
#endif
#include "TSMPlugin.h"
#include "TSMWarning.h"
#include "TSMError.h"

//***
TSMPlugin::TSMPluginList* TSMPlugin::theList = NULL;
TSMPlugin::Impl* TSMPlugin::theImpl = NULL;

//***
// TSMPlugin::Impl
//***
class TSMPlugin::Impl
{
public:

 //---
 // Modifiers
 //---

 void initializeMutex();
 // pre: None.
 // post: The mutex has been initialized.

2

 TSMWarning * lockList(void);
 // pre: The list is unlocked.
 // post: The list has been locked.

 TSMWarning * unlockList(void);
 // pre: The list is locked.
 // post: The list has been unlocked.

 //---
 // Data Members
 //---

#ifdef _WIN32
 typedef HANDLE Mutex;
#else
 typedef pthread_mutex_t Mutex;
#endif

 Mutex mutex;
};

//***
// TSMPlugin::Impl::initializeMutex
//***
void TSMPlugin::Impl::initializeMutex()
{
#ifdef _WIN32
 mutex = CreateMutex(NULL, TRUE, NULL); // TBD: handle errors
#else
 pthread_mutex_init(&mutex, NULL); // TBD: handle errors
#endif
}

//***
// TSMPlugin::Impl::lockList
//***
TSMWarning *TSMPlugin::Impl::lockList(void)
{
#ifdef _WIN32
 WaitForSingleObject(mutex, INFINITE);
#else
 pthread_mutex_lock(&mutex); // TBD: handle error returns
#endif
 return NULL;
}

//***
// TSMPlugin::Impl::unlockList
//***
TSMWarning *TSMPlugin::Impl::unlockList(void)
{
#ifdef _WIN32
 ReleaseMutex(mutex); // TBD: handle errors
#else
 pthread_mutex_unlock(&mutex); // TBD: handle error returns
#endif
 return NULL;
}

//***
// TSMPlugin::getList
//***

3

TSMWarning * TSMPlugin::getList(TSMPluginList*& aTSMPluginList) throw (TSMError)
{
 aTSMPluginList = theList;
 return NULL;
}

//***
// TSMPlugin::findPlugin
//***
TSMWarning *TSMPlugin::findPlugin(const std:: string& pluginName,
 TSMPlugin*& aTSMPlugin) throw (TSMError)
{

 TSMWarning *tsmWarn;
 theImpl->lockList();

 TSMPlugin::TSMPluginList* models = NULL;
 tsmWarn = TSMPlugin::getList(models);

 for (TSMPluginList::const_iterator i = models->begin();
 i != models->end();
 ++i)
 {
 std::string apluginName;
 tsmWarn = (*i)->getPluginName(apluginName);
 if (std::string(apluginName) == std::string(pluginName))
 {
 aTSMPlugin = const_cast < TSMPlugin* > (*i);
 break;
 }
 }
 tsmWarn = theImpl->unlockList();
 return tsmWarn;
}

//***
// TSMPlugin::removePlugin
//***
TSMWarning *TSMPlugin::removePlugin(const std::string& pluginName) throw (TSMError)

{
 TSMWarning *tsmWarn;
 TSMPlugin* pluginPtr = NULL;

 tsmWarn = findPlugin(pluginName, pluginPtr);

 if (pluginPtr !=NULL)
 {
 tsmWarn = theImpl->lockList();

 // find and remove pointer-to-plugin from theList
 TSMPluginList::iterator pos = std::find(theList->begin(),
 theList->end(),
 pluginPtr);
 if (theList->end() != pos)
 {
 theList->erase(pos);
 }
 else
 {

4

 std::cout << "TSMPlugin::removePlugin: Plugin " << pluginName
 << " not found" << std::endl;
 // THROW A NOT FOUND EXCEPTION
 }
 tsmWarn = theImpl->unlockList();
 }
 else
 {
 std::cout << "TSMPlugin::removePlugin: Plugin " << pluginName
 << " not found" << std::endl;
 // throw a not found exception
 }
 return tsmWarn;
} // removePlugin

//***
// TSMPlugin::TSMPlugin
//***
TSMPlugin::TSMPlugin()
{
 //---
 // If the list of registered sensor model factories does not exist yet, then
 // create it.
 //---

 if (!theList)
 {
 theList = new TSMPluginList;
 }

 if (!theImpl)
 {
 theImpl = new Impl;
 theImpl->initializeMutex();
 }

 //---
 // If the list of registered sensor model factories exists now (i.e., no
 // error occurred while creating it), then register the plugin factory in
 // theList by adding a pointer to this list.
 // The pointer points to the static instance of the derived sensor
 // model plugin.
 //---

 if (theList)
 {
 TSMWarning *tsmWarn = NULL;

 tsmWarn = theImpl->lockList();
 if (tsmWarn == NULL)
 {
 theList->push_back(this);
 tsmWarn = theImpl->unlockList();
 }
 }
}

