
 UNCLASSIFIED

 UNCLASSIFIED

CSM TRD 2007 08 01

Community Sensor Model (CSM)
Technical Requirements Document
Appendix D
Example Test Plan and Procedure

1 August 2007
Version 2.A Revision

 UNCLASSIFIED

 UNCLASSIFIED

Community Sensor Model (CSM)

for the [Sensor Name]

CDRL A004 Verification Test Plan/Report
[Version]

For:

[Contractual Customer]

Attention:
[Contact]

[Contract Reference Information]

Points of Contact:

Technical: Contractual:
[name and contact info] [name and contact info]
Phone: Phone:
Fax: Fax:
Email: Email:

 UNCLASSIFIED

 UNCLASSIFIED

CDRL A004 Verification Test Plan/Report
Community Sensor Model (CSM)

for the [Sensor Name]

Prepared By:
 [Name] Date
 [Title]

Approved By:
 [Name] Date [Name] Date
 [Company] Program Manager [Government] System Engineer

Accepted By:
 [Name] Date [Name] Date
 [Government] System Engineer [Government] Program Manager

 UNCLASSIFIED

i UNCLASSIFIED

REVISION RECORD
Revision Date Description Approval

 UNCLASSIFIED

ii UNCLASSIFIED

TABLE OF CONTENTS

1.0 Introduction...1
1.1 References and Applicable Documents ...1

1.1.1 Compliance Documents ..1
1.1.2 Verification Documents ...1
1.1.3 Reference Documents...1

1.2 Definitions/Acronyms..1
1.3 System Overview..2

1.3.1 Sensor Model vs. Geometry Model...2
1.3.2 Accuracy and Error..2

2.0 Verification Test Environment ..4
2.1 Physical Environment ...4
2.2 Hardware/Operating Environment..4
2.3 Software Environment ..5
2.4 Verification Test Data ...5

3.0 Test Identification ...6
3.1 Functionality Test ...6

3.1.1 Test Description ..6
3.1.2 Test Procedure..6
3.1.3 Test Results ..6

3.2 Performance Test ...6
3.2.1 Test Description ..6
3.2.2 Test Procedure..6
3.2.3 Test Results ..6

3.3 Analysis Test ..6
3.3.1 Test Description ..6
3.3.2 Test Procedure..7
3.3.3 Test Results ..7

3.4 Microsoft Windows Verification Test ..7
3.4.1 Test Description ..7
3.4.2 Test Procedure..7
3.4.3 Test Results ..8

4.0 Requirements Traceability ...9
5.0 Appendices...15
Appendix A Functionality Test Procedure...1

A.1 Requirements ...1
A.2 Procedure ...1

A.2.1 Test Preconditions...1
A.2.2 Test Steps ...1

Appendix B Performance Test Procedure ..1
B.1 Requirements ...1
B.2 Procedure ...1

B.2.1 Test Preconditions...1
B.2.2 Test Steps ...1

Appendix C Analysis Test Procedure..1
C.1 Requirements ...1
C.2 Procedure ...1

C.2.1 Test Preconditions...1
C.2.2 Test Steps ...1

Appendix D CSM Test Log Form ..1
Appendix E Test Scripts..1

E.1 Unix Scripts...1
E.1.1 vtsAccuracy ...1
E.1.2 vtsCommands ...1
E.1.3 vtsPerformance ...1
E.1.4 vtsPlugins ..2

E.2 Windows Scripts ...3
E.2.1 vtsAccuracy.bat ...3
E.2.2 vtsCommands.bat ...3

 UNCLASSIFIED

iii UNCLASSIFIED

E.2.3 vtsPerformance.bat ...3
E.2.4 vtsPlugins.bat ..4

E.3 VTS Scripts...5
E.3.1 vtsAccuracy.vts ...5
E.3.2 vtsCommands.vts..5
E.3.3 vtsPerformance.vts..13
E.3.4 vtsPlugins.vts...15

Appendix F As-Run Test Log Forms ..1
F.1 Functionality: Solaris 8 Operating System, SunONE Compiler..1
F.2 Functionality: Solaris 8 Operating System, GCC Compiler..1
F.3 Functionality: Solaris 9 Operating System, SunONE Compiler..1
F.4 Functionality: Solaris 9 Operating System, GCC Compiler..1
F.5 Performance: Unix..1
F.6 Analysis ..1

Appendix G As-Run Test Procedures ...1
G.1 Functionality: Solaris 8, SunONE Compiler..1
G.2 Functionality: Solaris 8 Operating System, GCC Compiler..1
G.3 Functionality: Solaris 9 Operating System, SunONE Compiler..1
G.4 Functionality: Solaris 9 Operating System, GCC Compiler..1
G.5 Performance: Unix..1
G.6 Analysis ..1

 UNCLASSIFIED

Page 1 UNCLASSIFIED

1.0 Introduction
The purpose of this document is to define the verification testing for the CSM [sensor name] sensor
model, in accordance with Statement of Objectives paragraph 2.7.

This document is organized as follows:
Section 1 Introduction – Provides document overview, document references, acronyms, and

system overview
Section 2 Verification Test Environment – Describes the test environment to be used during

testing
Section 3 Test Identification – Describes the tests to be performed
Section 4 Requirements Traceability – Provides traceability between the tests and requirements
Appendices Appendices – Appendices as needed, to include classified appendices under separate

cover for as-run test procedures.

1.1 References and Applicable Documents
This section lists documents that are referenced by this document or are useful for reference relevant to
the content of this document.

1.1.1 Compliance Documents
This section lists documents that describe or provide clarification to the requirements to be tested:

Document ID Document
Revision

Release
Date

Document
Title

CSM SOO (none) Statement of Objectives for the Community Sensor
Model (CSM) Developers

CSM TRD [Rev] [Date] Community Sensor Model (CSM) Technical
Requirements Document (TRD)

CSM API N/A N/A CSM TRD: Community Sensor Model (CSM)
Application Program Interface (API) Appendix

[Document ID] [Rev] [Date] [Technical/Cost Proposal Reference, if needed]

1.1.2 Verification Documents
This section lists CDRL items that document requirement compliance:

Document ID Document
Revision

Release
Date

Document
Title

A002 [Rev] [Date] CDRL A002 Technical Report: Geometry
Equations and Error Propagation Performance for
Community Sensor Model (CSM) for the [sensor
name]

A003 [Rev] [Date] CDRL A003 Technical Report: Design and
Installation Considerations for Community Sensor
Model (CSM) for the [sensor name]

1.1.3 Reference Documents
This section lists documents that are relevant to the activity and are listed for reference:

Document ID Document
Revision

Release
Date

Document
Title

[Document ID] [Rev] [Date] [ICD or IDD for sensor]
[Document ID] [Rev] [Date] [NITF 2.0 or 2.1 Specification]
[Document ID] [Rev] [Date] [Other interface documentation]

1.2 Definitions/Acronyms
This section defines all abbreviations used within this document, as well as common abbreviations found
in referenced documents. Since these abbreviations are presented here, the definition of each

 UNCLASSIFIED

Page 2 UNCLASSIFIED

abbreviation will not be presented within the text.
Acronym Definition

[Acronym] [Definition]

1.3 System Overview
Exploiting tactical imagery for military use requires the ability to associate the scene content of an image
(a two-dimensional (2D) representation) to its corresponding physical location in the real world (in three-
dimensional (3D) ground space). This association can be referred to as establishing correspondence
between image space and ground space. Although some situations may permit this correspondence to
be established through a manual approach (such as an comparing an image to a map or previously
captured image), most situations require greater levels of accuracy1, precision2 and speed than manual
approaches can provide. Targeting applications, for instance, usually require a high degree of both
accuracy and precision.

Fortunately, the ability exists to establish precise image space to ground space correspondence in an
automated way using algorithms implemented in software. This is done by processing the support
information (“image metadata”) that is recorded by the imaging platform and that is normally included in
the image file (e.g., NITF file) along with the image itself. By processing such parameters as airframe
position and orientation, sensor pointing angle, focal length, etc. (where the parameters needed are
dependent on the type of sensor), an accurate and precise correspondence between image space (i.e.,
pixels) and ground space (i.e., latitude, longitude, and height) can be established. The collection of
support information that accompanies an image is commonly called “image support data” (or “metadata”),
and the software algorithm that performs the conversion from image space to ground space is called a
“geometry model”.

1.3.1 Sensor Model vs. Geometry Model
The phrase “sensor model” is often used interchangeably with “geometry model” in referring to the
software that performs the conversion of image space to ground space. However, in this document
“sensor model” refers to a more broad collection of functions, which most notably also includes
accounting for input data error, or error propagation. The combination of the geometry model and the
error model is called the sensor model. The error model is explained in more detail in the following
paragraph.

1.3.2 Accuracy and Error
It is important to understand that the accuracy of the image space to ground space conversion is
dependent on the accuracy and completeness of the image support data. If the image support data
contains errors, or if there is information that is missing from the support data, then the accuracy in the
resulting ground space coordinate will suffer.

If estimates of the errors in the input support data are known then estimates of output error may be
computed. Computing the effect that input errors have on final output error is known as error
propagation, and the code that performs this computation is referred to in this document as an “error
model”. The error model combines the error estimates of input parameters, along with estimates of error
coming from missing or un-modeled information, to generate an estimate of error in the resulting ground
space coordinate. This ground space error estimate usually represented to users in the form of two
primary indicators, namely CE, and LE. CE is the estimated error distance in the horizontal direction and
LE is the estimated error distance in the vertical direction. These are usually represented with a numeric
qualifier as a part of the acronym (e.g., CE90, LE90) representing the statistical confidence of the
estimate; a CE90 therefore represents a 90th percentile confidence value for the CE. The model
proposed by this document will provide an estimate in the form of a covariance matrix for the ground
coordinates (ECEF: X, Y, Z) from which both CE and LE may be calculated. For the purposes of
verification testing, accuracy calculations comparing model imageToGround() output coordinates to test
point coordinates will include ∆X, ∆Y, ∆Z figures, a scalar ∆Error of absolute 3D error, and also CE90

1 “Accuracy” is defined as the degree to which a value may be in error.
2 “Precision” is defined as the resolution or granularity (i.e., number of decimal places, for instance) to

which the value is reported. (If a value is only accurate to ±1 unit of measure, precision to multiple
decimal places is of limited usefulness.)

 UNCLASSIFIED

Page 3 UNCLASSIFIED

and LE90 values calculated from the covariance output from the model.

 UNCLASSIFIED

Page 4 UNCLASSIFIED

2.0 Verification Test Environment
This section documents the physical environment, hardware/operating environment, and software
environment for the verification test for the [sensor name] sensor model.

2.1 Physical Environment
[Describe physical environment. The following text is provided as a sample.]
Verification testing occurred on 20 October 2004 at the CSM integration and test lab located in Harris
Government Communications Systems Division Wickham Road facility in Melbourne, Florida, in the DoD
SECRET secure lab area in building W3, room 1880. This area is approved for processing of classified
information, with appropriate security procedures in place regarding access and activities for the area.

Since the data classification for this area is DoD SECRET and much of the operational and test data is
classified at this level, certain information in this document is sanitized to keep the classification of this
document UNCLASSIFIED. Classified as-run data from the test is delivered separately from this report.

2.2 Hardware/Operating Environment
[Describe hardware/operating environment environment. The following text is provided as a sample.]
The following figure describes the hardware configuration for the integration:

SUTSM0004
SunBlade 150
Workstation

Loc: W3/1880-4

Ethernet

BayNetwork
BayStack 28115ADV

16 Port Switch
Ethernet Hub

Printer
SUTSM0002

SunBlade 2000
Workstation

Loc.: W3/1880-6

pctsm0200
Dell Precision 340
Loc.: W3 1880-7

External
Drive

SUTSM0003
SunBlade 150
Workstation

Loc.: W3/1880-5

All systems have shared network access to the printer. All Unix systems have shared access to the
external drive attached to system SUTSM0002.

The systems have the following operating systems and support software installed on each (software
products in bold are required on deployed systems, and software products in italics are used only during
the verification test – software products in normal text were used during the development and integration
process but are needed neither for verification testing nor for software operation):

System Software Type Software Name
Operating System Windows 2000
Networking Reflections Suite for X
Office Applications Microsoft Office
Development Environment Visual.NET Pro 2003
Data Viewer GeoView
Data Analysis MATLAB

pctsm0200

Data Analysis MathCAD
Operating System Solaris 8
Compiler SunONE Compiler Collection
Compiler gcc 3.2.3
Data Viewer GeoView

sutsm0002

Data Analysis Harris DPL SECRET baseline (including MET)

 UNCLASSIFIED

Page 5 UNCLASSIFIED

System Software Type Software Name
Operating System Solaris 9
Compiler SunONE Compiler Collection
Compiler gcc 3.2.3
Data Viewer GeoView

sutsm0003

Data Analysis Harris DPL SECRET baseline (including MET)
Operating System Solaris 9
Compiler SunONE Compiler Collection
Compiler gcc 3.2.3
Data Viewer GeoView

sutsm0004

Data Analysis Harris DPL SECRET baseline (including MET)

2.3 Software Environment
[Describe software environment. The following text is provided as a sample.]
There are four test procedures: Functionality, Performance, Analysis, and Microsoft Windows Verification
Test, described in detail in Section 3.0 that were executed in several configurations to assure coverage of
all requirements. The following table describes the software environments for these configurations:

Test Configuration System Applications
VTS 3.1 (Solaris version)
RQ4-A model (Solaris version)

Functionality
(Solaris 8 with Solaris compiler)

sutsm000
2

Harris Model Support SW (Solaris version)
VTS 3.1 (gcc version)
RQ4-A model (gcc version)

Functionality
(Solaris 8 with gcc compiler)

sutsm000
2

Harris Model Support SW (gcc version)
VTS 3.1 (Solaris version)
RQ4-A model (Solaris version)

Functionality
(Solaris 9 with Solaris compiler)

sutsm000
3

Harris Model Support SW (Solaris version)
VTS 3.1 (gcc version)
RQ4-A model (gcc version)

Functionality
(Solaris 9 with gcc compiler)

sutsm000
3

Harris Model Support SW (gcc version)
RQ4-A model (All versions)
Harris Model Support SW (All versions)

Microsoft Windows
Functionality
(All)

pctsm020
0
sutsm000
2

Harris Internal Test Application (All versions)

VTS 3.1 (Solaris version)
RQ4-A model (Solaris version)

Performance
(Unix)

sutsm000
2

Harris Model Support SW (Solaris version)
Microsoft Office
MATLAB

Analysis pctsm020
0

Reflections Suite for X

2.4 Verification Test Data
[Describe verification test data used. The following text is provided as a sample.]
The following data sets were used in the verification testing:

Data Set Data Source Description
Geospatial Evaluation GFI Global Hawk test data provided with surveyed truth points
GRIDLOCK GFI Global Hawk operational data (Operation Iraqi Freedom)

with NGA test points from GRIDLOCK program testing
Radiant Elm GFI Unclassified Global Hawk test data

 UNCLASSIFIED

Page 6 UNCLASSIFIED

3.0 Test Identification
This section describes the test procedures performed as part of the verification test, with test results.
Detailed procedures are provided in appendices referenced in each sub-section. The intent of this
section is to include as much detail as is practicable within the constraints of an UNCLASSIFIED
document.

3.1 Functionality Test

3.1.1 Test Description
The Functionality test verifies functional requirements and is run in all test configurations.

The Functionality test uses the Virtual Test System (VTS) to verify most requirements. The VTS is used
to test every CSM API method, which is verified via examination of the VTS log files. Some data
collected during the Functionality test is evaluated during the Analysis test.

3.1.2 Test Procedure
The detailed test procedure steps for the Functionality test may be found in Appendix A.

3.1.3 Test Results

3.1.3.1 Solaris 8 Operating System, SunONE 8.0 Compiler
[Describe test results, including all test deviations, incidents, etc.]

3.1.3.2 Solaris 8 Operating System, GNU GCC 3.2.3 Compiler
[Describe test results, including all test deviations, incidents, etc.]

3.1.3.3 Solaris 9 Operating System, SunONE 8.0 Compiler
[Describe test results, including all test deviations, incidents, etc.]

3.1.3.4 Solaris 9 Operating System, GNU GCC 3.2.3 Compiler
[Describe test results, including all test deviations, incidents, etc.]

3.2 Performance Test

3.2.1 Test Description
The Performance test verifies performance requirements and is run in specific test configurations only.
The test configurations used for the Performance test are those that most closely match the TRD
Appendix B system descriptions.

The Performance test uses the VTS to collect timing measurements for sensor model performance to
assure compliance with the TRD performance requirements.

3.2.2 Test Procedure
The detailed test procedure steps for the Performance test may be found in Appendix B.

3.2.3 Test Results
[Describe test results, including all test deviations, incidents, etc.]

3.3 Analysis Test

3.3.1 Test Description
The Analysis test verifies those requirements that may not be fully verified by the Functionality test or the
Performance test.

 UNCLASSIFIED

Page 7 UNCLASSIFIED

The Analysis test procedure verifies compliance with some requirements via software code inspection,
and verifies accuracy requirements via analysis of truth point data collected from the Functionality test.

3.3.2 Test Procedure
The detailed test procedure steps for the Analysis test may be found in Appendix C.

3.3.3 Test Results
[Describe test results, including all test deviations, incidents, etc. The following text is provided as a
sample.]
The test was begun at 1450, completed at 1740, and was Passed with Test Incidents.
Test Deviations
1) Step 75: Note only. In GRIDLOCK truth data, error ellipses from Published do not always intersect

with error ellipses from reference imagery.
Harris Response: No action needed. This was noted while examining truth data and is noted to the
Government for information purposes only.

2) Step 90: Due to directory permissions being set incorrectly, it was necessary to log out and log in a
different user for steps 86 through 93.
Harris Response: No action needed. This was corrected during the test and will be correct for future
test executions.

Test Incidents
1) Step 38: Investigate API mismatch between GH SAR model code and API document. Exception

throws are not in API document for tsm_Plugin:: methods.
Harris Response: July 30 version of document with redlines is correct, clean version with redlines
accepted is not. GH SAR code matches redlined document and VTS code. Latest version of API
document is correct. Harris recommends SPR for documentation update to API indicating that API
Section 6.0 is for reference and suggesting that contractors use the source headers from the VTS
distribution for development purposes.

2) Step 56: For TSMSensorModel::groundToImage() method, the groundCovariance argument should
be declared const. Section 4 and Section 6 of the API are inconsistent. GH SAR code is consistent
with Section 4.
Harris Response: const is the correct declaration since the groundCovariance is an input to the
method. Harris recommends SPR to update API document for consistency.

3) Step 58: Investigate use of CSM_NO_WARNING constant and be consistent with API.
Harris Response: Harris will update the baseline via PTR 45 prior to submission of CDRL A005.

4) Step 62: Investigate use of CSM_NO_ERROR constant and be consistent with API.
Harris Response: Harris will update the baseline via PTR 45 prior to submission of CDRL A005.

5) Step 65: TSMMisc.h static const declarations are in API document but not in GH SAR code. Static
constants exist in VTS code.
Harris Response: Harris will update the baseline via PTR 45 prior to submission of CDRL A005.
There was intent to remove these from the API, but this will require an SPR at this time. Harris will
comply with API as written.

3.4 Microsoft Windows Verification Test
[Usually, only 3 procedures should be needed. If additional tests are needed, describe these in additional
test descriptions. The following text is provided as a sample.]

3.4.1 Test Description
The Microsoft Windows Verification test verifies that the Windows version of the sensor model produces
consistent functional results with the two Unix versions.

The Microsoft Windows Verification test verifies API compliance and results consistency only, and was
executed as a work-around because the VTS for Windows was not available at the time of test execution.

3.4.2 Test Procedure
The detailed test procedure steps for the Microsoft Windows Verification test may be found in [Appendix].

 UNCLASSIFIED

Page 8 UNCLASSIFIED

3.4.3 Test Results
[Describe test results, including all test deviations, incidents, etc.]

 UNCLASSIFIED

Page 9 UNCLASSIFIED

4.0 Requirements Traceability
[This matrix was developed from a draft version of CSM Version 2.0 TRD and API. Later versions may
have revised requirements.]
This section documents traceability between the various CSM requirements and the Verification Test
Procedures. The table included in this section documents the following data about the requirements:
ID: An identifying number for convenience in requirement references.
DOC: The source document for the requirement. SOO = CSM Statement of Objectives; TRD

= CSM Technical Requirements Document; API = CSM Application Program Interface.
See Section 1.1 for detailed document references.

Section: Paragraph reference within source document. “Derived” requirements refer to sections
of the source documents that do not contain “shall” statements but document testable
criteria that a reasonable reader might consider to be requirements.

Allocation: Verification Test Procedure (see Section 3) that demonstrates the requirement.
Requirements allocated as “N/A” are satisfied via another CDRL, contractually waived,
or non-testable.

Requirement: Text of the requirement from source document.
Notes: Clarifying notes regarding contractual amendment of requirement, interpretation of

requirement, assumptions regarding testing, etc.

ID DOC Section Allocation Requirement Notes

1 SOO 2.1
Functionality,
Analysis,
Performance

Implement the sensor model in
accordance with the government approved
CSM TRD.

See TRD requirements

2 SOO 2.2 Functionality,
Analysis

Implement the sensor model in
accordance with the government approved
CSM API.

See API requirements

3 SOO 2.3 N/A

Comply with the appropriate security
guides. (Director Central Intelligence
Directive (DCID) 6/3 and Joint DODIIS /
Cryptologic SCI Information Systems
Security Standards (JDCSISS))

Assurance of security
requirements is principally a
SET function. The sensor
model will be designed such
that it does not impede the
ability of a SET to meet these
requirements.

4 SOO 2.4a Functionality

Design and develop the comunity sensor
model as a dynamically linked (or loaded)
library or shared object that does not
require re-compilation of the SET.

5 SOO 2.4b Functionality

Models may be added or removed from
the SET without impact on the SET or
other models.

Demonstrated only for no-
impact to SET, using VTS.
No-impact to other models is
non-testable for single model
testing, and has been verified
via CSM demonstrations.

6 SOO 2.4c N/A

A technical report detailing the software
design information and installation
considerations shall accompany the
sensor model. At a minimum the report
shall cover installation, setup and
verification of the software.

CDRL A003

7 SOO 2.5a N/A

Provide a baseline for the geographical
positioning performance of the sensor
being modeled. A technical
report/documentation providing detailed
information on the baseline performance,
sensor model design, and error
propagation shall accompany the sensor
model. Deliver a description of the model
that can be reviewed and analyzed by
Government representatives. Provide the
underlying equations and algorithms.

CDRL A002

8 SOO 2.5b [Functionality
or N/A]

Implement and deliver the sensor model
(equations and algorithms) in MatLab,
MathCad or similar environment to allow
independent exercise of the model
capabilities.

[Some models may waive this
contractually. If so, note
accordingly.]

9 SOO 2.6 Analysis
Provide 100 test points and their expected
results. These test points provide image
to ground, ground to image and image loci

[If MATLAB or MathCAD
model not provided, note
verification accordingly.]

 UNCLASSIFIED

Page 10 UNCLASSIFIED

ID DOC Section Allocation Requirement Notes
transformations used in the sensor model
verification and validation process. These
points are calculated using the underlying
equations, not the sensor model as
implemented in software.

10 SOO 2.7 N/A

Perform and execute verification testing.
A test report shall accompany the sensor
model. Provide all test plans, procedures,
input and results for verification in the
Automated Verification Tool (AVT).

CDRL A004

11 SOO 2.8 N/A

Deliver the sensor model source and
object code in CSM API specified format
on compact disc. Provide technical
support for Government verification test
using the AVT.

CDRL A005
[If source code is waived
contractually, note
accordingly.]

12 SOO 2.9 N/A

Provide management of the program cost,
schedule, and performance through
maximum interaction of government and
contractor personnel on integrated product
teams.

CDRL A001
[Note additional program
management activities]

13 SOO 2.10 N/A
Provide one representative for two
separate meetings (4 days total) in
Dayton, OH.

[Document meetings]

14 SOO 2.11 N/A Contractor support will be needed until
[Date]

[Document]

15 TRD 3.1 Functionality,
Analysis

The CSM shall be implemented in
accordance with the API, which is the
interface between the CSM and the SET.

See API requirements

16 TRD 3.2a Functionality
The CSM shall be a dynamically
linked/shared library that does not require
re-compilation of the SET.

17 TRD 3.2b Functionality

The CSM shall be added or removed from
the SET without impact on the SET or
other models.

Demonstrated only for no-
impact to SET, using VTS.
No-impact to other models is
non-testable for single model
testing, and has been verified
via CSM demonstrations.

18 TRD 3.3 Functionality

With the exception of image support data
and any exceptions in the API, the CSM
shall utilize standard metric units (base
and derived) in accordance with the
International Systems of Units (SI).

Note that this requirement
only applies to values passed
across the interface between
the CSM and SET. It does
not mandate the units that
may be reported to the SET
user or used by the CSM
internally.

19 TRD 3.4.2 Functionality
The CSM shall transform a 3-D point in
ground space to a 2-D point in image
space.

20 TRD 3.4.3 Functionality
The CSM shall transform a 2-D point in
image space to a 3-D point in ground
space for a given elevation.

21 TRD 3.4.4 Functionality
The CSM shall compute an imaging locus
(in ground space coordinates) from a 2-D
image point.

22 TRD 3.5.1 Functionality,
Analysis

The CSM shall use a rectangular Earth
Centered Earth Fixed (ECEF) coordinate
frame referenced to WGS-84.

23 TRD 3.6a Functionality The CSM shall provide image collection
time in accordance with the API.

24 TRD 3.6b Functionality Time shall be provided in Coordinated
Universal Time (UTC).

25 TRD 3.6c Functionality The time/date format shall comply with
ISO 8601:2000.

26 TRD 3.7 Functionality The CSM shall provide the sensor position
and velocity in accordance with the API.

27 TRD 3.7.1 Functionality The 3-D sensor position shall be provided
as defined in paragraph 3.5.1.

28 TRD 3.7.3 Functionality
The 3-D sensor velocity vector shall be
provided in meters/second units relative to
the coordinate system in paragraph 3.5.1.

29 TRD 3.8a Functionality The CSM shall provide sensor model type
and identification.

 UNCLASSIFIED

Page 11 UNCLASSIFIED

ID DOC Section Allocation Requirement Notes

30 TRD 3.8b Functionality

Since multiple TSMs may be applicable to
a given image, the CSM shall provide
information to allow the SET or SET
operator to select the appropriate model, if
needed.

Refers to the
getReleaseDate() and
getSensorModelVersion
TSMPlugin routines.

31 TRD 3.9 Functionality
The CSM shall provide information on the
state of the model.

The state of a sensor model
is the set of data needed to
instantiate the sensor model.

32 TRD 3.10.1 Functionality

The CSM shall provide information
regarding the availability of model
parameters as defined in the API.

Refers to the
getNumParameters() and
getParameterName()
tsmSensorModel routines.

33 TRD 3.10.2a Functionality

Selected CSM sensor model parameters
shall be adjustable in order to refine the
reported ground coordinate corresponding
to a given image coordinate, i.e. allow
registration type operations.

34 TRD 3.10.2b Functionality

At a minimum, the CSM shall provide the
following as adjustable parameters:
EO/IR
Three dimensions of sensor trajectory
Three dimensions of sensor orientation
SAR
Three dimensions of position

[Document type of model]

35 TRD 3.10.3a Functionality The CSM shall transfer sensor model as
defined in the API document.

36 TRD 3.10.3b Functionality Parameters shall be as identified in NITF
or the SDEs.

37 TRD 3.11.1 Functionality

The CSM shall provide uncertainty
estimates of the adjustable model
parameters in the form of error
covariances.

38 TRD 3.11.2a Functionality

The CSM shall accept adjusted
covariance values to optimize
performance of photogrammetric
operations.

39 TRD 3.11.2b Functionality The CSM shall provide access to these
updated values.

39 TRD 3.12a Functionality

The CSM shall compute partial derivatives
of the image position with respect to the
ground coordinates at the given ground
position.

40 TRD 3.12b Functionality

The CSM shall compute partial derivatives
of the image position with respect to the
given sensor parameter at the given
ground position.

41 TRD 3.13 Functionality

The CSM shall be capable of ingesting
necessary support data (including SDEs)
delivered by the sensor through the SET in
accordance with the API.

42 TRD 3.14.1a [Functionality
or NA]

The CSM shall correct for systematic
errors.

[Document accordingly if no
correctible systematic errors
are appropriate for the
model.]

43 TRD 3.14.1b [Functionality
or NA]

Systematic errors shall be consistently
applied to all functions involving the image
/ ground relationship.

[Document accordingly if no
correctible systematic errors
are appropriate for the
model.]

44 TRD 3.14.2a Analysis

The CSM testing shall include verification
of the sensor/sensor model combined
accuracy compared to control points (e.g.,
ground survey points or other truth data).

45 TRD 3.14.2b [Functionality
or N/A]

The CSM results shall be consistent with
the underlying math model (ground to
image and image to ground).

[Document accordingly if
MATLAB/MathCAD model
contractually waived.]

46 TRD 3.14.2c Functionality,
Analysis

The CSM shall produce image positions
that are consistent with the corresponding
uncertainty estimates and surveyed
ground space measurements.

47 TRD 3.14.3 Functionality

The CSM shall produce uncertainty
estimates that are consistent with the
observed accuracy of the sensor/sensor
model combination.

 UNCLASSIFIED

Page 12 UNCLASSIFIED

ID DOC Section Allocation Requirement Notes

48 TRD 3.14.4 Functionality,
Analysis

The CSM shall support the calculation of
Circular Error and Linear Error at a
standard deviation (e.g., 50% or 90%) for
all geopositioning scenarios.

API specifies that error
covariances are provided.
Further calculations are
separate from the model.

49 TRD 3.14.5 Performance

The CSM shall process at least 100
transformations per second (image to
ground, ground to image or imaging locus)
once the CSM is initialized, assuming the
following hardware/software configurations
identified in Appendix B.

50 TRD 3.14.6 Performance

The elapsed time between a query and
answer shall be less than 5 milli-seconds
assuming the same hardware/software
configuration described in Appendix B.

51 TRD 3.15a N/A

The CSM shall be site installable and
uninstallable without interference to other
CSMs.

No-impact to other models is
non-testable for single model
testing, and has been verified
via CSM demonstrations.

52 TRD 3.15b Functionality
The CSM shall be installable and be
capable of being executed without
requiring recompilation of the SET.

53 TRD 3.16.1 Analysis The CSM shall be coded using the ANSI
standard C++ programming language.

54 TRD 3.16.2a Analysis
The CSM shall maintain independence
from specific computer operating systems
in order to insure maximum portability.

55 TRD 3.16.2b Analysis
The CSM shall be designed to support
UNIX and/or Windows operating systems
and compilers as specified in Appendix B.

56 TRD 3.16.2c Functionality

In the Microsoft Windows environment, the
CSM shall be a dynamic link library (.dll)
file—accessible with LoadLibrary and
GetProcAddress.

57 TRD 3.16.2d Functionality
In the UNIX environment, the CSM shall
be a shared object (.so) file—accessible
with dlopen and dlsym.

58 TRD 3.16.2e Analysis

The CSM shall be designed to minimize
the number of executable versions needed
to support the range of development
environments specified in Appendix B.

59 TRD Derived
4.1 N/A

Table 4 - Evaluation Methodology for TRD
Section 3 Requirements

Since there is no "shall" in
Section 4, it is assumed this
is non-binding guidance.

60 TRD Derived
4.2 N/A

Verification/Validation Process Assume that development
contractor is responsible only
for Step A) in the verification
test.

61 API 3.1.7 Analysis

This library [CSM Library] shall include the
implementation of concrete classes that
derive from the TSMPlugin and
TSMSensorModel base classes, defined
below, as well as a static instance of the
TSMPlugin-derived class.

62 API 3.1.16 Functionality

Sensor model state data is formatted as a
null-terminated ASCII character std:: string
where the first set of characters in the std::
string (up to and including the first newline
character) shall be the sensor model
name, where the sensor model name is as
defined above. See paragraph 5.5.

63 API 5.1.2 Functionality,
Analysis

The API shall use a rectangular coordinate
system referenced to the Earth Centered
Earth Fixed (ECEF) coordinate frame
referenced to WGS-84.

64 API 5.6a Functionality

The Sensor Model files shall be named by
concatenating the sensor name or
abbreviation (e.g. SYERS2), the sensing
device identifier (e.g. camera1), operating
mode, a serial number or other machine
specific identifier (e.g. sn25), the image
processor (e.g. airborne), the computing
platform operating system (e.g. solaris7), a
CSM version number followed by a

Harris will comply with
direction provided in 2/5/04
email.

 UNCLASSIFIED

Page 13 UNCLASSIFIED

ID DOC Section Allocation Requirement Notes
decimal point and the appropriate
extension (e.g. dll, so1).

65 API 5.6b Functionality
Each of the concatenated fields before the
decimal point shall be separated by an
underscore.

66 API 5.8 N/A
The CSM shall identify and document
environment variables within the
installation instructions.

CDRL A003

67 API Derived
5.10 Functionality

The CSM shall comply with the API
description of the TSMPlugin objects and
methods.

Assume that demonstration
that sensor model
successfully integrates with
VTS with no errors will be
sufficient to demonstrate this
requirement.

68 API 5.10.7.1a Functionality

If the plugin name is not specified within
contractual documentation, then the plugin
developer shall coordinate with the
procuring government office to obtain the
name for the plugin.

[Document contractual
direction]

69 API 5.10.7.1b Functionality

This name shall be a null-terminated
ASCII character string consisting of only
the following characters: the digits ‘0’
through ‘9’, the letters ‘A’ through ‘Z’
(upper case only), and the underscore ‘_’.

81 API 5.10.7.2a Functionality

If sensor model name strings are not
specified within contractual
documentation, then the plugin developer
shall coordinate with the procuring
government office to obtain the names to
be used for all sensor models that can be
created by the CSM plugin.

[Document contractual
direction]

70 API 5.10.7.2b Functionality

These names shall be a null-terminated
ASCII character string consisting of only
the following characters: the digits ‘0’
through ‘9’, the letters ‘A’ through ‘Z’
(upper case only), and the underscore ‘_’.

71 API 5.10.7.3a Functionality

If the manufacturer name string is not
specified by contractual documentation,
then the plugin developer shall contact the
procuring government office to coordinate
this string.

[Document contractual
direction]

72 API 5.10.7.3b Functionality

The TSMPlugin manufacturer name shall
be a null-terminated ASCII character string
consisting of only the following characters:
the digits ‘0’ through ‘9’, the letters ‘A’
through ‘Z’ (upper case only) and the
underscore ‘_’.

73 API Derived
5.11 Functionality

The CSM shall comply with the API
description of the TSMPlugin objects and
methods.

Assume that demonstration
that sensor model
successfully integrates with
VTS with no errors will be
sufficient to demonstrate this
requirement.

74 API Derived
5.12 Functionality

The CSM shall comply with the API
description of the ISD objects.

Assume that demonstration
that sensor model
successfully integrates with
VTS with no errors will be
sufficient to demonstrate this
requirement.

75 API Derived
5.13 Functionality

The CSM shall comply with the API
description of the tsmSensorModel objects
and methods.

Assume that demonstration
that sensor model
successfully integrates with
VTS with no errors will be
sufficient to demonstrate this
requirement.

76 API 5.13.1 [Functionality
or NA]

This method shall include corrections for
systematic errors as required by the
Comunity Sensor Model Technical
Requirements Document.

[Document accordingly if no
correctible systematic errors
are appropriate for the
model.]

77 API 5.13.2 [Functionality
or NA]

This method shall include corrections for
systematic errors as required by the
Comunity Sensor Model Technical
Requirements Document.

[Document accordingly if no
correctible systematic errors
are appropriate for the
model.]

 UNCLASSIFIED

Page 14 UNCLASSIFIED

ID DOC Section Allocation Requirement Notes

78 API 5.13.3 [Functionality
or NA]

This method shall include corrections for
systematic errors as required by the
Comunity Sensor Model Technical
Requirements Document.

[Document accordingly if no
correctible systematic errors
are appropriate for the
model.]

79 API 5.13.4 [Functionality
or NA]

This method shall include corrections for
systematic errors as required by the
Comunity Sensor Model Technical
Requirements Document.

[Document accordingly if no
correctible systematic errors
are appropriate for the
model.]

80 API 5.13.5 [Functionality
or NA]

This method shall include corrections for
systematic errors as required by the
Comunity Sensor Model Technical
Requirements Document.

[Document accordingly if no
correctible systematic errors
are appropriate for the
model.]

81 API 5.13.6 [Functionality
or NA]

This method shall include corrections for
systematic errors as required by the
Comunity Sensor Model Technical
Requirements Document.

[Document accordingly if no
correctible systematic errors
are appropriate for the
model.]

82 API 5.14 Functionality

The CSM shall comply with the API
description of CSM error control.

Assume that demonstration
that sensor model
successfully integrates with
VTS with no errors will be
sufficient to demonstrate this
requirement.

83 API 5.15 Functionality

The CSM shall comply with the API
description of CSM memory management.

Assume that demonstration
that sensor model
successfully integrates with
VTS with no errors will be
sufficient to demonstrate this
requirement.

84 API 5.15 Functionality

All output parameters shall be allocated by
the calling application except for [list]

Assume that demonstration
that sensor model
successfully integrates with
VTS with no errors will be
sufficient to demonstrate this
requirement.

85 API Derived
7.0 Analysis The CSM shall use the published code

headers.

 UNCLASSIFIED

Page 15 UNCLASSIFIED

5.0 Appendices
This section contains the following document appendices:
Appendix A: Functionality Test
Appendix B: Performance Test
Appendix C: Analysis Test
Appendix D: Test Log Form
Appendix E: Test Scripts
Appendix F: As-Run Test Logs
Appendix G: As-Run Test Procedures

 UNCLASSIFIED

Page A-1 UNCLASSIFIED

Appendix A Functionality Test Procedure
The Functionality Test verifies compliance with the SOO, TRD, and API functional requirements.

A.1 Requirements
The following requirements are addressed by this test procedure:
[Insert extraction from Requirements Traceability Table as appropriate.]

A.2 Procedure

A.2.1 Test Preconditions
The following conditions are assumed for this test procedure:
6) Directory structures exist on test platform for VTS

Unix, Sun Compiler: /programs/tsm/data/vts_sun
Unix, gcc Compiler: /programs/tsm/data/vts_gcc
Windows: \programs\tsm\data\vts

7) VTS has already been compiled as appropriate for platform during QA-witnessed Dry Run
8) VTS test scripts in /programs/tsm/data/Test subdirectory
9) No sensor models exist in VTS directory structure
10) Sensor model has already been compiled and CM distribution media prepared

A.2.2 Test Steps
[Develop test steps as appropriate for sensor mode and test environment. The following steps are
provided as examples, but requirement numbers do not match with the earlier table.]
 Step

Operator Action Expected Results Comments

� 1. Record start time, procedure name, and platform on Test Log
Form.

Data recorded.

� 2. Logon to appropriate test platform. Logon completed.

� 3. Open a command window (xterm on Unix, Command Prompt
on Windows)

Window opened.

� 4.
Navigate to test directory
 On Unix, “cd /programs/tsm/data/vts_<compiler>”
 On Windows, “cd \programs\tsm\data\vts”

Action completed.

This completes test setup.

� 5.

Note: If the Functionality Test has already been run for this
compiler, skip to step 12.
Display directory contents:
 On Unix, “ls –1 | more”
 On Windows, “dir /p”

Directory contents
displayed, one page at a
time.

� 6.
Verify that there are no shared objects in the directory:
 On Unix, shared objects are .so or .so.* files
 On Windows, shared objects are .dll files

No shared object files
exist.

� 7.
Initialize VTS application:
 On Unix, “./vts”
 On Windows, “vts”

VTS initializes and
prompts for a log file
name.

� 8. Enter “plugin.log” VTS discovers no sensor
models found and exits.

� 9. Verify that VTS is functional with no sensor models installed. VTS application
functions.

� 10. Follow installation procedures, as appropriate for platform,
found in CDRL A003 to install GH SAR sensor model.

Installation completed.

� 11. Verify that no recompilation of the VTS software was needed
during installation.

No recompilation needed.

� 12.
Display directory contents:
 On Unix, “ls –1 | more”
 On Windows, “dir /p”

Directory contents
displayed, one page at a
time.

� 13.

Verify that the only shared object file in the directory is the
Global Hawk SAR shared object:
 On Unix, shared objects are .so or .so.* files
 On Windows, shared objects are .dll files

GH SAR shared object
found.

� 14.
Verify that shared object name is correct:
 For Unix/GCC,
 GlobalHawk_SAR_Harris_2_solaris9gcc_tsm31.so

Shared object is named
in accordance with
Requirements 74 and 75.

 UNCLASSIFIED

Page A-2 UNCLASSIFIED

 Step
Operator Action Expected Results Comments

 For Unix/Sun,
 GlobalHawk_SAR_Harris_2_solaris9sun_tsm31.so
 For Windows,
 GlobalHawk_SAR_Harris_2_win2k_tsm31.dll

Requirements 65 and 66
are satisfied.

� 15.
Initialize VTS application:
 On Unix, “./vts”
 On Windows, “vts”

VTS initializes and
prompts for a log file
name.

� 16.

Enter “plugin.log” VTS discovers GH SAR
sensor model plugin and
displays “vtsPlugin>”
prompt.

� 17. Verify that VTS discovers GH SAR sensor model without
recompilation.

VTS application
functions.

� 18.

Enter VTS command “printList” VTS returns GH SAR
sensor model plugin and
displays “vtsPlugin>”
prompt.

� 19.
Verify that GH SAR sensor mode plugin name (displayed via
printList command) is:
GLOBAL_HAWK_RQ4A_SAR_HARRIS_2

GH SAR plugin name is
consistent with
Requirements 79 and 80.

� 20.
Enter VTS command
“removePlugin GLOBAL_HAWK_RQ4A_SAR_HARRIS_2”

VTS indicates plugin
found and displays
“vtsPlugin>” prompt.

� 21.
Enter VTS command “printList” VTS returns empty plugin

list and displays
“vtsPlugin>” prompt.

� 22. Enter VTS command “exit”. VTS exits, command
prompt displayed.

This verifies that the GH SAR sensor model is independent of the VTS application, and that the filename is correct.
Requirements demonstrated: 4, 5, 16, 17, 61, 65, 66, 74, 75, 79, 80

� 23.

Note: If the vtsPlugins.vts and vtsPlugins scripts have been
examined during a prior execution of the Functionality Test,
skip to step 28.
Display vtsPlugins.vts script:
 On Unix, “view /programs/tsm/data/Test/vtsPlugins.vts”
 On Windows, “edit /programs/tsm/data/Test/vtsPlugins.vts”

VTS script displayed in a
simple editor.

� 24.

Using CSM API documentation, verify that all CSM API
TSMPlugin:: methods are included in the vtsPlugins.vts script

All CSM API sensor
model methods are
included in script.
Requirements 78 and 85
are satisfied.

� 25. Exit editor. Command line prompt
displayed.

� 26.

Display vtsPlugins executable script:
 On Unix, “more /programs/tsm/data/Test/vtsPlugins”
 On Windows, “more
/programs/tsm/data/Test/vtsPlugins.bat”

Executable script
displayed, one page at a
time.

� 27.

Verify that vtsPlugins script invokes VTS with the
vtsPlugins.vts script as input and logs output to
vtsPlugins.out.log.

Executable script
executes no functionality
other than VTS, with
stated input and output.

� 28. Execute vtsPlugins script. Action completed.

� 29.
Display vtsPlugins.out.log:
 On Unix: “view vtsPlugins.out.log”
 On Windows: “edit vtsPlugins.out.log”

Logfile displayed in a
simple editor.

� 30.

Verify that log output contains no error conditions. (In
particular, verify that no errors due to error control, memory
management, or parameter declarations.)

No error conditions in
logfile. Requirements 94,
95, and 96 are partially
satisfied.

� 31.
Verify that GH SAR sensor model name (displayed via
getSensorModelName command) is:
GLOBAL_HAWK_RQ4A_SAR_HARRIS_2

GH SAR sensor model
name is consistent with
Requirements 81 and 82.

� 32.
Verify that Manufacturer name (displayed via getManufacturer
command) is “HARRIS”

Manufacturer name is
consistent with
Requirements 83 and 84.

� 33. Verify that log output includes demonstration of
getReleaseDate and getSensorModelVersion.

Requirement 34 is
satisfied.

� 34. Verify that log output includes demonstration of “state”-related
initialization routines.

Requirement 35 is
partially satisfied.

� 35.
Verify that log output includes demonstration of sensor model
initialization using the various
constructSensorModel…methods.

Requirements 50 is
satisfied.

 UNCLASSIFIED

Page A-3 UNCLASSIFIED

 Step
Operator Action Expected Results Comments

� 36.
Verify that log output includes demonstration that sensor model
initialization completes successfully using Filename,
Bytestream, and NITF ISD versions.

Requirement 86 is
partially satisfied.

� 37. Exit editor. Command line prompt
displayed.

This verifies that the GH SAR sensor model is compliant with the CSM API TSMPlugin:: methods, including naming conventions.
Requirements demonstrated: 15 (partial), 34, 35 (partial), 50, 78, 81, 82, 83, 84, 85, 86 (partial), 94 (partial), 95 (partial), 96 (partial)

� 38.

Note: If the vtsCommands.vts and vtsCommands scripts have
been examined during a prior execution of the Functionality
Test, skip to step 43.
Display vtsCommands.vts script:
 On Unix, “view /programs/tsm/data/Test/vtsCommands.vts”
 On Windows, “edit
/programs/tsm/data/Test/vtsCommands.vts”

VTS script displayed in a
simple editor.

� 39.

Using CSM API documentation, verify that all CSM API
tsmSensorModel:: methods are included in the
vtsCommands.vts script

All CSM API sensor
model methods are
included in script.
Requirement 87 is
satisfied.

� 40. Exit editor. Command line prompt
displayed.

� 41.

Display vtsCommands executable script:
 On Unix, “more /programs/tsm/data/Test/vtsCommands”
 On Windows, “more
/programs/tsm/data/Test/vtsCommands.bat”

Executable script
displayed.

� 42.

Verify that vtsCommands script invokes VTS with the
vtsCommands.vts script as input and logs output to
vtsCommands.out.log.

Executable script
executes no functionality
other than VTS, with
stated input and output.

� 43. Execute vtsCommands script. Action completed.

� 44.
Display vtsCommands.out.log:
 On Unix: “view vtsCommands.out.log”
 On Windows: “edit vtsCommands.out.log”

Logfile displayed in a
simple editor.

� 45.

Verify that log output contains no error conditions. (In
particular, verify that no errors due to error control, memory
management, or parameter declarations.)

No error conditions in
logfile. Requirements 94,
95, and 96 are partially
satisfied.

� 46. Exit editor. Command line prompt
displayed.

This verifies that the GH SAR sensor model is compliant with the CSM API for all tsmSensorModel:: API methods.
Requirements demonstrated: 15 (partial), 86 (partial), 87, 94 (partial), 95 (partial), 96 (partial)

� 47.
Display or print vtsCommands.vts.log.
 On Unix: “view vtsCommands.vts.log”
 On Windows: “edit vtsCommands.vts.log”

Logfile displayed in a
simple editor.

� 48.
Verify that log output includes demonstration of
groundToImage for transformation of 3-D ground space points
to 2-D image space points.

Requirement 22 is
satisfied.

� 49.
Verify that groundToImage2 and imageToGround2 include 2x2
matrices for image uncertainty estimates and 3x3 matrices for
ground uncertainty estimates.

Requirement 56 is
partially satisfied.

� 50.
Verify that log output includes demonstration of
imageToGround for transformation of 2-D image space points
to 3-D ground space points.

Requirement 23 is
satisfied.

� 51.

Write down the X, Y, and Z coordinate output from one of the
imageToGround() method invocations and calculate the
magnitude of the XYZ vector:

222 =++

=
=
=

zyx

z
y
x

Magnitude of vector
computed.

� 52.
Compare magnitude of vector to mean earth radius in meters
(~6,371,300m). If the vector magnitude is within ±5% of this
value, then unit of measure is in meters.

Requirement 18 is
satisfied.

� 53.

Verify that log output includes demonstration of
imageToProximateImagingLocus and
imageToRemoteImagingLocus computation from 2-D image
point.

Requirement 24 is
satisfied.

� 54. Verify that ground coordinates for above methods are entered
and displayed using 3-coordinate ECEF values.

Requirements 25 and 73
are partially satisfied.

 UNCLASSIFIED

Page A-4 UNCLASSIFIED

 Step
Operator Action Expected Results Comments

� 55.
Verify that log output includes demonstration of
getReferenceDateAndTime, and that time output is in the
format DDhhmmssZMMMYY.

Requirements 26, 27,
and 28 are satisfied.

� 56.
Verify that log output includes demonstration of
getSensorPosition and getSensorVelocity, displayed in ECEF
coordinate format.

Requirements 29, 30,
and 32 are satisfied.

� 57.

Verify that log output includes demonstration of
getSensorModelName, getCovarianceModelType, and
getPedigree to display sensor model type and identification
information.

Requirement 33 is
satisfied.

� 58. Verify that log output includes demonstration of
getSensorModelState to provide information on model state.

Requirement 35 is
partially satisfied.

� 59.

Verify that log output includes demonstration of
getNumParameters, getParameterName,
getCurrentParameterValue, setCurrentParameterValue,
getOriginalParameterValue, and setOriginalParameterValue to
provide information about adjustable model parameters.

Requirement 36 is
satisfied.

� 60.
Verify that list of adjustable parameters includes, at a
minimum, 3 parameters for sensor position and 3 parameters
for sensor velocity.

Requirement 39 is
satisfied.

� 61.
Verify that log output includes a demonstration that
groundToImage and imageToGround outputs change as
parameter values are modified.

Requirement 37 is
satisfied.

� 62. Verify that the adjustable parameters correspond to
parameters that exist in the NITF header for Global Hawk SAR.

Requirement 43 is
satisfied.

� 63.

Verify that log output includes demonstration of
getCurrentParameterCovariance,
setCurrentParameterCovariance,
getOriginalParameterCovariance, and
setOriginalParameterCovariance to provide and adjust model
covariance/uncertainty values.

Requirements 45, 46,
and 47 are satisfied.

� 64.

Verify that log output includes demonstration of
computeGroundPartials and computeSensorPartials to
compute partial derivatives of image position with respect to
both ground and sensor position

Requirements 48 and 49
are satisfied.

This verifies that the GH SAR model is compliant with specific functional requirements.
Requirements demonstrated: 18, 22, 23, 24, 25 (partial), 26, 27, 28, 29, 30 32, 33, 35 (partial), 36, 37, 39, 43, 45, 46, 47, 48, 49, 56,
73 (partial)

� 65.

Note: If the vtsAccuracy.vts and vtsAccuracy scripts have been
examined during a prior execution of the Functionality Test,
skip to step 71.
Display vtsAccuracy executable script:
 On Unix, “view /programs/tsm/data/Test/vtsAccuracy”
 On Windows, “edit
/programs/tsm/data/Test/vtsAccuracy.bat”

Executable script
displayed in a simple
editor.

� 66.

Verify that vtsAccuracy script invokes VTS many times, once
for each test image, with an image-specific script as input and
logs all output to vtsAccuracy.out.log.

Executable script
executes no functionality
other than VTS, with
stated inputs and outputs.

� 67. Exit editor. Command line prompt
displayed.

� 68.
Select and display one of the image-specific VTS scripts:
 On Unix, “view <filename>”
 On Windows, “edit <filename>”

VTS script displayed in a
simple editor.

� 69.

Verify that script content is to log all output to an image-specific
output file, initialize the GH SAR model on the specific image,
invoke imageToGround2 a number of times with truth values,
and exit.

Accuracy script collects
sensor model generated
ground points for
specified image points.

� 70. Exit editor. Command line prompt
displayed.

� 71.
Execute vtsAccuracy script. Action completed,

command line prompt
displayed.

� 72.
Display vtsAccuracy.out.log:
 On Unix: “view vtsAccuracy.out.log”
 On Windows: “edit vtsAccuracy.out.log”

Logfile displayed in a
simple editor.

� 73.

Verify that log output contains no error conditions. (In
particular, verify that no errors due to error control, memory
management, or parameter declarations.)

Accuracy data collection
completed with no errors.
(Output from this data
collection will be used in
Analysis procedure.)

� 74. Exit editor. Command line prompt

 UNCLASSIFIED

Page A-5 UNCLASSIFIED

 Step
Operator Action Expected Results Comments

displayed.
This completes verification of the requirements allocated to this test procedure.
The following requirements are fully satisfied via this procedure: 4,5,16, 17, 18, 18, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36,
37, 38, 39, 43, 45, 46, 47, 48, 49, 50, 56, 61, 65, 66, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 94, 95, 96
The following requirements are partially satisfied via this procedure: 1 (remaining satisfaction via Performance and Analysis
procedures), 2 (remaining satisfaction via Analysis procedure), 15 (remaining satisfaction via Analysis procedure), 18 (remaining
satisfaction via Analysis procedure), 25 (remaining satisfaction via Analysis procedure), 55 (remaining satisfaction via Analysis
procedure), 57 (remaining satisfaction via Analysis procedure), 73 (remaining satisfaction via Analysis procedure)

 UNCLASSIFIED

Page B-1 UNCLASSIFIED

Appendix B Performance Test Procedure
The Performance Test verifies compliance with the TRD performance requirements.

B.1 Requirements
The following requirements are addressed by this test procedure:
[Insert extraction from Requirements Traceability Table as appropriate.]

B.2 Procedure

B.2.1 Test Preconditions
The following conditions are assumed for this test procedure:
1) Directory structures exist on test platform for VTS

Unix, Sun Compiler: /programs/tsm/data/vts_sun
Unix, gcc Compiler: /programs/tsm/data/vts_gcc
Windows: \programs\tsm\data\vts

2) VTS has already been compiled as appropriate for platform
3) VTS test scripts in /programs/tsm/data/Test subdirectory
4) No sensor models exist in VTS directory structure
5) Sensor model has already been compiled and CM distribution media prepared

B.2.2 Test Steps
[Develop test steps as appropriate for sensor mode and test environment. The following steps are
provided as examples, but requirement numbers do not match with the earlier table.]
 Step

Operator Action Expected Results Comments

� 1. Record start time, procedure name, and platform on Test Log
Form.

Data recorded.

� 2. Logon to appropriate test platform. Logon completed.

� 3. Open a command window (xterm on Unix, Command Prompt
on Windows)

Window opened.

� 4.
Navigate to test directory
 On Unix, “cd /programs/tsm/data/vts_<compiler>”
 On Windows, “cd \programs\tsm\data\vts”

Action completed.

� 5.
Display directory contents:
 On Unix, “ls –1 | more”
 On Windows, “dir /p”

Directory contents
displayed, one page at a
time.

� 6.

Verify presence of shared objects in the directory:
 On Unix, shared objects are .so or .so.* files
 On Windows, shared objects are .dll files

If there are no shared objects in the directory, then the sensor
model needs to be installed; execute step 7. If there are
shared objects in the directory (e.g., the Functionality
procedure has already been run), skip to step 8.

Determine whether or not
installation is needed.

� 7. Follow installation procedures, as appropriate for platform,
found in CDRL A003 to install GH SAR sensor model.

Installation completed.

This completes test setup and assures that the GH SAR sensor model has been installed.

� 8.

Display vtsPerformance.vts script:
 On Unix, “view
/programs/tsm/data/Test/vtsPerformance.vts”
 On Windows, “edit
/programs/tsm/data/Test/vtsPerformance.vts”

VTS script displayed in a
simple editor.

� 9.

Verify that vtsPerformance.vts script uses the vtsRepeat
capability to repeated invoke each of the following methods
100 times each:
 groundToImage1
 groundToImage2
 imageToGround1
 imageToGround2
 imageToProximateImagingLocus
 imageToRemoteImagingLocus

All API methods
performing functionality
included in Requirement
58 text are included in
test procedure.

� 10. Verify that vtsPerformance.vts script executes every sensor
model command at least once.

All sensor model
commands executed at

 UNCLASSIFIED

Page B-2 UNCLASSIFIED

 Step
Operator Action Expected Results Comments

least once.

� 11. Exit editor. Command line prompt
displayed.

� 12.

Display vtsPerformance executable script:
 On Unix, “more /programs/tsm/data/Test/vtsPerformance”
 On Windows, “more
/programs/tsm/data/Test/vtsPerformance.bat”

Executable script
displayed, one page at a
time.

� 13.

Verify that vtsPerformance script invokes VTS with the
vtsPerformance.vts script as input and logs output to
vtsPerformance.out.log.

Executable script
executes no functionality
other than VTS, with
stated input and output.

� 14. Execute vtsPerformance script. Action completed.

� 15.
Display vtsPerformance.out.log:
 On Unix: “view vtsPerformance.out.log”
 On Windows: “edit vtsPerformance.out.log”

Logfile displayed in a
simple editor.

� 16. Verify that log output contains no error conditions. No error conditions in
logfile.

� 17. Exit editor. Command line prompt
displayed.

� 18.
Display vtsPerformance.vts.log:
 On Unix: “view vtsPerformance.vts.log”
 On Windows: “edit vtsPerformance.vts.log”

Logfile displayed in a
simple editor.

� 19. Verify that log output contains no error conditions. No error conditions in
logfile.

� 20.

Record clocks value for completion of “continue” command:

Clock value 1: ________________________

Start time recorded.

� 21.
Verify that each vtsRepeat command sequence takes less than
1 second (based on CLOCKS PER SECOND value displayed
by VTS)

Requirement 58 is
satisfied.

� 22.

Record clocks value for completion of final command at end of
logfile:

Clock value 2: ________________________

Stop time recorded.

� 23.

Record number of commands executed during procedure
(vtsRepeat command sequences count as 100 each):

Number of commands: ________________________

Number of commands
recorded.

� 24.

Compute average number of VTS Clocks per commands by
subtracting Clock value 1 from Clock value 2 and dividing the
difference by the number of commands:

Average time per command: ________________________

Time per command.

� 25.

Compare to CLOCKS PER SECOND value to determine if
average time is less than 5 milliseconds.

Average per command is
less than or equal to 5
milliseconds.
Requirement 59 is
satisfied.

� 26. Exit editor. Command line prompt
displayed.

This completes verification of the requirements allocated to this test procedure.
The following requirements are fully satisfied via this procedure: 58, 59
The following requirements are partially satisfied via this procedure: 1 (remaining satisfaction via Functionality and Analysis
procedures)

 UNCLASSIFIED

Page C-1 UNCLASSIFIED

Appendix C Analysis Test Procedure
The Analysis Test verifies compliance with those SOO, TRD, and API requirements that require analysis
for verification.

C.1 Requirements
The following requirements are addressed by this test procedure:
[Insert extraction from Requirements Traceability Table as appropriate.]

C.2 Procedure

C.2.1 Test Preconditions
The following conditions are assumed for this test procedure:
1) Functionality and Performance Test procedures have successfully been run on all test platforms, and

data from accuracy scripts is located on test platforms.
2) Sensor model has already been compiled and CM distribution media prepared
3) CM media of software baselines prepared

C.2.2 Test Steps
[Develop test steps as appropriate for sensor mode and test environment. The following steps are
provided as examples, but requirement numbers do not match with the earlier table.]
 Step

Operator Action Expected Results Comments

� 1. Record start time, procedure name, and platform on Test Log
Form.

Data recorded.

� 2. Logon to PC. Logon completed.
� 3. Open Reflections FTP client FTP client open

� 4. Using FTP, copy accuracy script output from Functionality
Tests to PC

Files copied

� 5. Exit FTP. FTP client exits.
This completes test setup and data transfer.
� 6. Load CM GH SAR software baseline media in CD/DVD drive Media loaded.

� 7. Open Windows Explorer and navigate to source code headers
directory in GH SAR software baseline.

Action completed.

� 8. Examine Ecf.h file by right-clicking on the file and selecting
“Open With…”, then selecting WordPad.

Ecf.h file displayed in
WordPad editor.

� 9.
Verify that line 247 of header file documents that WGS-84 is
the default datum.

WGS-84 is default datum.
Requirements 25 and 73
partially satisfied.

� 10. Exit WordPad. Editor closed.

� 11.
Examine TSMPlugin.h file by right-clicking on the file and
selecting “Open With…”, then selecting WordPad.

TSMPlugin.h file
displayed in WordPad
editor.

� 12. Verify using API document Section 7.1 to verify that
TSMPlugin.h is software baseline matches published code.

.h file contents match API
published version.

� 13. Exit WordPad. Editor closed.

� 14.
Examine TSMImageSupportData.h file by right-clicking on the
file and selecting “Open With…”, then selecting WordPad.

TSMPlugin.h file
displayed in WordPad
editor.

� 15.
Verify using API document Section 7.2.1 to verify that
TSMImageSupportData.h is software baseline matches
published code.

.h file contents match API
published version.

� 16. Exit WordPad. Editor closed.

� 17.
Examine tsm_ISDNITF21.h file by right-clicking on the file and
selecting “Open With…”, then selecting WordPad.

TSMPlugin.h file
displayed in WordPad
editor.

� 18.
Verify using API document Section 7.2.2 to verify that
tsm_ISDNITF21.h is software baseline matches published
code.

.h file contents match API
published version.

� 19. Exit WordPad. Editor closed.

� 20.
Examine tsm_ISDNITF20.h file by right-clicking on the file and
selecting “Open With…”, then selecting WordPad.

TSMPlugin.h file
displayed in WordPad
editor.

� 21. Verify using API document Section 7.2.3 to verify that .h file contents match API

 UNCLASSIFIED

Page C-2 UNCLASSIFIED

 Step
Operator Action Expected Results Comments

tsm_ISDNITF20.h is software baseline matches published
code.

published version.

� 22. Exit WordPad. Editor closed.

� 23.
Examine tsm_ISDByteStream.h file by right-clicking on the file
and selecting “Open With…”, then selecting WordPad.

TSMPlugin.h file
displayed in WordPad
editor.

� 24.
Verify using API document Section 7.2.4 to verify that
tsm_ISDByteStream.h is software baseline matches published
code.

.h file contents match API
published version.

� 25. Exit WordPad. Editor closed.

� 26.
Examine tsm_ISDFilename.h file by right-clicking on the file
and selecting “Open With…”, then selecting WordPad.

TSMPlugin.h file
displayed in WordPad
editor.

� 27.
Verify using API document Section 7.2.5 to verify that
tsm_ISDFilename.h is software baseline matches published
code.

.h file contents match API
published version.

� 28. Exit WordPad. Editor closed.

� 29.
Examine TSMSensorModel.h file by right-clicking on the file
and selecting “Open With…”, then selecting WordPad.

TSMPlugin.h file
displayed in WordPad
editor.

� 30.
Verify using API document Section 7.3 to verify that
TSMSensorModel.h is software baseline matches published
code.

.h file contents match API
published version.

� 31. Exit WordPad. Editor closed.

� 32.
Examine TSMWarning.h file by right-clicking on the file and
selecting “Open With…”, then selecting WordPad.

TSMPlugin.h file
displayed in WordPad
editor.

� 33. Verify using API document Section 7.4.1 to verify that
TSMWarning.h is software baseline matches published code.

.h file contents match API
published version.

� 34. Exit WordPad. Editor closed.

� 35.
Examine TSMError.h file by right-clicking on the file and
selecting “Open With…”, then selecting WordPad.

TSMPlugin.h file
displayed in WordPad
editor.

� 36. Verify using API document Section 7.4.2 to verify that
TSMError.h is software baseline matches published code.

.h file contents match API
published version.

� 37. Exit WordPad. Editor closed.

� 38.
Examine TSMMisc.h file by right-clicking on the file and
selecting “Open With…”, then selecting WordPad.

TSMPlugin.h file
displayed in WordPad
editor.

� 39. Verify using API document Section 7.5 to verify that
TSMMisc.h is software baseline matches published code.

.h file contents match API
published version.

� 40. Exit WordPad. Editor closed.
This verifies that the code headers used for the GH SAR model match those published as a part of the API document. This also
verifies that base classes and static classes are implemented appropriately, and that the API method interfaces match.
Requirements demonstrated: 2 (partial), 15 (partial), 25 (partial), 71, 73 (partial), 97

� 41. Using Windows Explorer, navigate to build scripts in GH SAR
software baseline.

Action completed.

� 42. Examine build scripts by right-clicking on script files and
selecting “Open With…”, then selecting WordPad.

Script files displayed.

� 43. For all scripts, verify that the same code baseline is used
regardless of operating system for both Unix and Windows.

Requirements 63 and 64
are satisfied.

� 44. For all scripts, verify that the compiler used in the build scripts
is variant of C++.

Requirement 62 is
satisfied.

� 45.

For all scripts, verify that there is only one compilation for
Solaris for the Sun compiler, one compilation for Solaris for the
GCC compiler, and one compilation for Windows regardless of
OS version.

Requirement 67 is
satisfied.

� 46. Exit WordPad for all scripts. Editor(s) closed.
This verifies that the code meets expectations for programming language and operating system independence.
Requirements demonstrated: 62, 63, 64, 67

� 47. Using Windows Explorer, navigate to directory with Accuracy
Analysis spreadsheet and open spreadsheet using Excel.

Spreadsheet open.

� 48.
Using Windows Explorer, navigate to directory with
Geopositioning Evaluation truth data and open presentation
using PowerPoint.

PowerPoint presentation
open.

� 49. Using Windows Explorer, navigate to directory with GRIDLOCK
truth data and open presentation using Excel.

Spreadsheet open.

� 50. As requested by test witnesses, demonstrate how truth
information is stored in the Accuracy Analysis spreadsheet.

Process described.

� 51.
As requested by test witnesses, demonstrate using GeoView
how truth point locations were determined for the
Geopositioning Evaluation data points.

Process described.

 UNCLASSIFIED

Page C-3 UNCLASSIFIED

 Step
Operator Action Expected Results Comments

� 52.
Transpose accuracy script output contents from Functionality
test runs into Accuracy Analysis spreadsheet.

Truth information is
accurately transposed
into spreadsheet.

� 53.

Verify that information from truth sources has been accurately
transposed into spreadsheet.

Names of test witnesses concurring information accuracy:

 __

 __

Truth information verified.

� 54. Select “Options…” from the Excel “Tools” menu. Options dialog box
opened.

� 55. Select “Calc Now (F9)” from the “Calculation” tab to recalculate
all formulas in the spreadsheet.

Spreadsheet formulas
are recalculated.

� 56. Select “OK” or “Cancel” to close the Options dialog box. Options dialog box
closed.

� 57.

Review accuracy results. Spreadsheet calculates the
difference between model output and truth values (∆X, ∆Y, ∆Z
figures, and a scalar ∆Error of absolute 3D error), and displays
error covariance for comparison.

Spreadsheet contains
computed results.

� 58. Verify that at least 100 truth points are included in the
spreadsheet.

Requirement 9 is
satisfied.

� 59.
Select the CE/LE90 export tab in the spreadsheet and save the
data as a comma-separated values (.csv) file, named
“Covariance.csv”

File saved

� 60. Open MATLAB MATLAB open
� 61. Open the “/Programs/CSM/Data/MATLAB/testCeLe90.m” file MATLAB script open

� 62. Examine script to demonstrate process of converting 3x3 ECF
covariance data matrix into ENU CE90 and LE90

Requirement 57 is
satisfied

� 63. Examine “supportData.csv” file as needed to verify script Support data file
available

� 64. Execute the MATLAB script Script executes
� 65. In Excel, open the “cele90.txt” file as a space-delimited file. File open

� 66. Select the two columns of data and paste this data into the
Accuracy Analysis spreadsheet

Data imported

� 67. Examine Δ Error, CE90, LE90, and Err90 values Err90 is ≥ Δ error at least
90% of the time

� 68.

Verify that difference values are consistent with error
covariances.

Names of test witnesses concurring data consistency:

 __

 __

Requirement 55 is
satisfied.

This verifies accuracy analysis requirements.
Requirements demonstrated: 9, 55, 57

� 69.

Verify by examining all Test Log Forms that no API
requirements have been failed.

All API requirements
passed. Requirements 2
(SOO requirement for API
compliance) and 15 (TRD
requirement for API
compliance) are satisfied.

� 70.

Verify by examining all Test Log Forms that no TRD
requirements have been failed.

All TRD requirements
passed. SOO
Requirement 1
(requirement for TRD
compliance) is satisfied.

This completes verification of the requirements allocated to this test procedure.
The following requirements are fully satisfied upon completion of this procedure (assumes prior completion of Functionality and
Performance procedures): 1, 2, 9, 15, 25, 55, 57, 62, 63, 64, 67, 71, 73, 97

 UNCLASSIFIED

Page D-1 UNCLASSIFIED

Appendix D CSM Test Log Form

Test Case ID/Name:

Test Platform:

Start Date: Start Time: Stop Date: Stop Time:

Test Conductor: Developer QA:
 Name and Organization Name and Organization

Test Witness: Test Observer:
 Name and Organization Name and Organization

Test Procedure Status:
� Passed (All Requirements Passed, minor red lines acceptable)

� Passed with Deviation(s) (All Requirements Passed, steps modified to fulfill requirements)

� Passed with Test Incident(s) (All Requirements Passed, PTR or DR recorded below)

� Failed (All Requirements, except as listed below, Passed. DR recorded)

RECORD ALL DEVIATIONS FROM PROCEDURE OR TEST FAILURES BELOW:

Test
Step

Deviation
/Failure

(D/F)

Comments
(Please provide complete, detailed comments.

Include all evidence of test step failure.)

PTR/DR #

(If Applicable)

 UNCLASSIFIED

Page E-1 UNCLASSIFIED

Appendix E Test Scripts
[Provide scripts as needed for test. Samples are provided.]

E.1 Unix Scripts

E.1.1 vtsAccuracy
Not Included. File content is classified.

E.1.2 vtsCommands
#!/bin/csh
#---
Classification: UNCLASSIFIED

Script Name : vtsCommands
Script Purpose: Execute CSM Virtual Test System for GH SAR
Verification Test to verify tsmSensorModel
API methods.
Script Limits : Deletes logfiles before execution. If old
logfiles are needed, these should be moved
to another name or location.

History
Date Description Author
05-AUG-04 Initial Creation JMA
14-OCT-04 Corrections for test environment JMA
#---

Clean up logfiles

rm -f vtsCommands.vts.log
rm -f vtsCommands.out.log

run VTS

./vts < /programs/tsm/data/Test/vtsCommands.vts >&! vtsCommands.out.log

E.1.3 vtsPerformance
#!/bin/csh
#---
Classification: UNCLASSIFIED

Script Name : vtsPerformance
Script Purpose: Execute CSM Virtual Test System for GH SAR
Verification Test to verify tsmSensorModel
API methods.
Script Limits : Deletes logfiles before execution. If old
logfiles are needed, these should be moved
to another name or location.

History
Date Description Author
05-AUG-04 Initial Creation JMA
14-OCT-04 Corrections for test environment JMA
#---

Clean up logfiles

rm -f vtsPerformance.vts.log
rm -f vtsPerformance.out.log

 UNCLASSIFIED

Page E-2 UNCLASSIFIED

run VTS

./vts < /programs/tsm/data/Test/vtsPerformance.vts >&! vtsPerformance.out.log

E.1.4 vtsPlugins
#!/bin/csh
#---
Classification: UNCLASSIFIED

Script Name : vtsPlugins
Script Purpose: Execute CSM Virtual Test System for GH SAR
Verification Test to verify tsmPlugin API
methods.
Script Limits : Deletes logfiles before execution. If old
logfiles are needed, these should be moved
to another name or location.

History
Date Description Author
05-AUG-04 Initial Creation JMA
14-OCT-04 Corrections for test environment JMA
#---

Clean up logfiles

rm -f vtsPlugins.vts.log
rm -f vtsPlugins.out.log

run VTS

./vts < /programs/tsm/data/Test/vtsPlugins.vts >&! vtsPlugins.out.log

 UNCLASSIFIED

Page E-3 UNCLASSIFIED

E.2 Windows Scripts

E.2.1 vtsAccuracy.bat
Not Included. File content is classified.

E.2.2 vtsCommands.bat
REM ---
REM Classification: UNCLASSIFIED
REM
REM Script Name : vtsCommands
REM Script Purpose: Execute CSM Virtual Test System for GH SAR
REM Verification Test to verify tsmSensorModel
REM API methods.
REM Script Limits : Deletes logfiles before execution. If old
REM logfiles are needed, these should be moved
REM to another name or location.
REM
REM History
REM Date Description Author
REM 05-AUG-04 Initial Creation JMA
REM 14-OCT-04 Corrections for test environment JMA
REM ---
REM
REM Clean up logfiles
REM
del /f /q vtsCommands.vts.log
del /f /q vtsCommands.out.log
REM
REM run VTS
REM
./vts < /programs/tsm/data/Test/vtsCommands.vts > vtsCommands.out.log

E.2.3 vtsPerformance.bat
REM ---
REM Classification: UNCLASSIFIED
REM
REM Script Name : vtsPerformance
REM Script Purpose: Execute CSM Virtual Test System for GH SAR
REM Verification Test to verify tsmSensorModel
REM API methods.
REM Script Limits : Deletes logfiles before execution. If old
REM logfiles are needed, these should be moved
REM to another name or location.
REM
REM History
REM Date Description Author
REM 05-AUG-04 Initial Creation JMA
REM 14-OCT-04 Corrections for test environment JMA
REM ---
REM
REM Clean up logfiles
REM
del /f /q vtsPerformance.vts.log
del /f /q vtsPerformance.out.log
REM
REM run VTS
REM
./vts < /programs/tsm/data/Test/vtsPerformance.vts > vtsPerformance.out.log

 UNCLASSIFIED

Page E-4 UNCLASSIFIED

E.2.4 vtsPlugins.bat
REM ---
REM Classification: UNCLASSIFIED
REM
REM Script Name : vtsPlugins
REM Script Purpose: Execute CSM Virtual Test System for GH SAR
REM Verification Test to verify tsmPlugin API
REM methods.
REM Script Limits : Deletes logfiles before execution. If old
REM logfiles are needed, these should be moved
REM to another name or location.
REM
REM History
REM Date Description Author
REM 05-AUG-04 Initial Creation JMA
REM 14-OCT-04 Corrections for test environment JMA
REM ---
REM
REM Clean up logfiles
REM
del /f /q vtsPlugins.vts.log
del /f /q vtsPlugins.out.log
REM
REM run VTS
REM
./vts < /programs/tsm/data/Test/vtsPlugins.vts > vtsPlugins.out.log

 UNCLASSIFIED

Page E-5 UNCLASSIFIED

E.3 VTS Scripts

E.3.1 vtsAccuracy.vts
Not Included. File content is classified.

E.3.2 vtsCommands.vts
./vtsCommands.vts.log

Classification: UNCLASSIFIED
VTS Test Script: vtsCommands.vts

History
Date Description Author
05-AUG-04 Initial Creation JMA
18-OCT-04 Corrections from witnessed dry run JMA

Read image file using filename input method

vtsReadFilename SAR_XRANGE3_02_9510_0_0_0.ntf

vts model setup and initialization

makeModelListFromISD GLOBAL_HAWK_RQ4A_SAR_HARRIS_2
constructSensorModelFromISD
continue

Execute tsmSensorModelCommands

groundToImage - both forms, with and without precision
(using ground location near CCRP)

groundToImage1 -2345854 -4356976 4012743 0.1
groundToImage1 -2345854 -4356976 4012743
groundToImage2 -2345854 -4356976 4012743 2 0 0 0 2 0 0 0 2 0.1
groundToImage2 -2345854 -4356976 4012743 2 0 0 0 2 0 0 0 2

imageToGround - both forms, with and without precision
(using the CCRP pixel location and altitude)

imageToGround1 4480 4444 1273 0.1
imageToGround1 4480 4444 1273
imageToGround2 4480 4444 1 0 0 1 1273 2 0.1
imageToGround2 4480 4444 1 0 0 1 1273 2

imageToProximateImagingLocus, with and without precision

imageToProximateImagingLocus 4480 4444 -2345854 -4356976 4012743 0.1
imageToProximateImagingLocus 4480 4444 -2345854 -4356976 4012743

imageToRemoteImagingLocus, with and without precision

imageToRemoteImagingLocus 4480 4444 0.1
imageToRemoteImagingLocus 4480 4444

computeGroundPartials

computeGroundPartials -2345854 -4356976 4012743

computeSensorPartials - both forms, with and without precision

 UNCLASSIFIED

Page E-6 UNCLASSIFIED

(also includes 1 call each for all adjustable parameters)

computeSensorPartials1 0 -2345854 -4356976 4012743 0.1
computeSensorPartials1 0 -2345854 -4356976 4012743
computeSensorPartials2 0 4480 4444 -2345854 -4356976 4012743 0.1
computeSensorPartials2 0 4480 4444 -2345854 -4356976 4012743
computeSensorPartials2 1 4480 4444 -2345854 -4356976 4012743
computeSensorPartials2 2 4480 4444 -2345854 -4356976 4012743
computeSensorPartials2 3 4480 4444 -2345854 -4356976 4012743

getTrajectoryIdentifier

getTrajectoryIdentifier

getReferenceDateAndTime

getReferenceDateAndTime

getImageTime

getImageTime 0 0
getImageTime 4480 4444

getSensorPosition

getSensorPosition 0 0
getSensorPosition 4480 4444

getSensorVelocity

getSensorVelocity 0 0
getSensorVelocity 4480 4444

getPedigree

getPedigree

getImageIdentifier

getImageIdentifier

setImageIdentifier

setImageIdentifier RESET_IMAGE_ID

getImageIdentifier

getImageIdentifier

getSensorIdentifier

getSensorIdentifier

getPlatformIdentifier

getPlatformIdentifier

getImageSize

getImageSize

getValidAltitudeRange

getValidAltitudeRange

 UNCLASSIFIED

Page E-7 UNCLASSIFIED

getIlluminationDirection

getIlluminationDirection -2345854 -4356976 4012743

getReferencePoint

getReferencePoint

setReferencePoint

setReferencePoint -2345854 -4356976 4012743

getReferencePoint

getReferencePoint

getSensorModelName

getSensorModelName2

getCovarianceModelType

getCovarianceModelType

getNumParameters

getNumParameters

getParameterName

getParameterName 0
getParameterName 1
getParameterName 2
getParameterName 3
getParameterName 4
getParameterName 5
getParameterName 6

getParameterType

getParameterType 0
getParameterType 1
getParameterType 2
getParameterType 3
getParameterType 4
getParameterType 5
getParameterType 6

getCovarianceModelParameters

getCovarianceModelParameters

getCurrentParameterCovariance - once for each pair

getCurrentParameterCovariance 0 0
getCurrentParameterCovariance 0 1
getCurrentParameterCovariance 0 2
getCurrentParameterCovariance 0 3
getCurrentParameterCovariance 0 4
getCurrentParameterCovariance 0 5
getCurrentParameterCovariance 0 6
getCurrentParameterCovariance 0 0
getCurrentParameterCovariance 1 1
getCurrentParameterCovariance 1 2
getCurrentParameterCovariance 1 3

 UNCLASSIFIED

Page E-8 UNCLASSIFIED

getCurrentParameterCovariance 1 4
getCurrentParameterCovariance 1 5
getCurrentParameterCovariance 1 6
getCurrentParameterCovariance 2 0
getCurrentParameterCovariance 2 1
getCurrentParameterCovariance 2 2
getCurrentParameterCovariance 2 3
getCurrentParameterCovariance 2 4
getCurrentParameterCovariance 2 5
getCurrentParameterCovariance 2 6
getCurrentParameterCovariance 3 0
getCurrentParameterCovariance 3 1
getCurrentParameterCovariance 3 2
getCurrentParameterCovariance 3 3
getCurrentParameterCovariance 3 4
getCurrentParameterCovariance 3 5
getCurrentParameterCovariance 3 6
getCurrentParameterCovariance 4 0
getCurrentParameterCovariance 4 1
getCurrentParameterCovariance 4 2
getCurrentParameterCovariance 4 3
getCurrentParameterCovariance 4 4
getCurrentParameterCovariance 4 5
getCurrentParameterCovariance 4 6
getCurrentParameterCovariance 5 0
getCurrentParameterCovariance 5 1
getCurrentParameterCovariance 5 2
getCurrentParameterCovariance 5 3
getCurrentParameterCovariance 5 4
getCurrentParameterCovariance 5 5
getCurrentParameterCovariance 5 6
getCurrentParameterCovariance 6 0
getCurrentParameterCovariance 6 1
getCurrentParameterCovariance 6 2
getCurrentParameterCovariance 6 3
getCurrentParameterCovariance 6 4
getCurrentParameterCovariance 6 5
getCurrentParameterCovariance 6 6

setCurrentParameterCovariance - once for each pair

setCurrentParameterCovariance 0 0 1
setCurrentParameterCovariance 0 1 1
setCurrentParameterCovariance 0 2 1
setCurrentParameterCovariance 0 3 1
setCurrentParameterCovariance 0 4 1
setCurrentParameterCovariance 0 5 1
setCurrentParameterCovariance 0 6 1
setCurrentParameterCovariance 1 0 1
setCurrentParameterCovariance 1 1 1
setCurrentParameterCovariance 1 2 1
setCurrentParameterCovariance 1 3 1
setCurrentParameterCovariance 1 4 1
setCurrentParameterCovariance 1 5 1
setCurrentParameterCovariance 1 6 1
setCurrentParameterCovariance 2 0 1
setCurrentParameterCovariance 2 1 1
setCurrentParameterCovariance 2 2 1
setCurrentParameterCovariance 2 3 1
setCurrentParameterCovariance 2 4 1
setCurrentParameterCovariance 2 5 1
setCurrentParameterCovariance 2 6 1
setCurrentParameterCovariance 3 0 1
setCurrentParameterCovariance 3 1 1
setCurrentParameterCovariance 3 2 1

 UNCLASSIFIED

Page E-9 UNCLASSIFIED

setCurrentParameterCovariance 3 3 1
setCurrentParameterCovariance 3 4 1
setCurrentParameterCovariance 3 5 1
setCurrentParameterCovariance 3 6 1
setCurrentParameterCovariance 4 0 1
setCurrentParameterCovariance 4 1 1
setCurrentParameterCovariance 4 2 1
setCurrentParameterCovariance 4 3 1
setCurrentParameterCovariance 4 4 1
setCurrentParameterCovariance 4 5 1
setCurrentParameterCovariance 4 6 1
setCurrentParameterCovariance 5 0 1
setCurrentParameterCovariance 5 1 1
setCurrentParameterCovariance 5 2 1
setCurrentParameterCovariance 5 3 1
setCurrentParameterCovariance 5 4 1
setCurrentParameterCovariance 5 5 1
setCurrentParameterCovariance 5 6 1
setCurrentParameterCovariance 6 0 1
setCurrentParameterCovariance 6 1 1
setCurrentParameterCovariance 6 2 1
setCurrentParameterCovariance 6 3 1
setCurrentParameterCovariance 6 4 1
setCurrentParameterCovariance 6 5 1
setCurrentParameterCovariance 6 6 1

getCurrentParameterCovariance - once for each pair
(to display changed values)

getCurrentParameterCovariance 0 0
getCurrentParameterCovariance 0 1
getCurrentParameterCovariance 0 2
getCurrentParameterCovariance 0 3
getCurrentParameterCovariance 0 4
getCurrentParameterCovariance 0 5
getCurrentParameterCovariance 0 6
getCurrentParameterCovariance 0 0
getCurrentParameterCovariance 1 1
getCurrentParameterCovariance 1 2
getCurrentParameterCovariance 1 3
getCurrentParameterCovariance 1 4
getCurrentParameterCovariance 1 5
getCurrentParameterCovariance 1 6
getCurrentParameterCovariance 2 0
getCurrentParameterCovariance 2 1
getCurrentParameterCovariance 2 2
getCurrentParameterCovariance 2 3
getCurrentParameterCovariance 2 4
getCurrentParameterCovariance 2 5
getCurrentParameterCovariance 2 6
getCurrentParameterCovariance 3 0
getCurrentParameterCovariance 3 1
getCurrentParameterCovariance 3 2
getCurrentParameterCovariance 3 3
getCurrentParameterCovariance 3 4
getCurrentParameterCovariance 3 5
getCurrentParameterCovariance 3 6
getCurrentParameterCovariance 4 0
getCurrentParameterCovariance 4 1
getCurrentParameterCovariance 4 2
getCurrentParameterCovariance 4 3
getCurrentParameterCovariance 4 4
getCurrentParameterCovariance 4 5
getCurrentParameterCovariance 4 6
getCurrentParameterCovariance 5 0

 UNCLASSIFIED

Page E-10 UNCLASSIFIED

getCurrentParameterCovariance 5 1
getCurrentParameterCovariance 5 2
getCurrentParameterCovariance 5 3
getCurrentParameterCovariance 5 4
getCurrentParameterCovariance 5 5
getCurrentParameterCovariance 5 6
getCurrentParameterCovariance 6 0
getCurrentParameterCovariance 6 1
getCurrentParameterCovariance 6 2
getCurrentParameterCovariance 6 3
getCurrentParameterCovariance 6 4
getCurrentParameterCovariance 6 5
getCurrentParameterCovariance 6 6

getOriginalParameterCovariance - once for each pair

getOriginalParameterCovariance 0 0
getOriginalParameterCovariance 0 1
getOriginalParameterCovariance 0 2
getOriginalParameterCovariance 0 3
getOriginalParameterCovariance 0 4
getOriginalParameterCovariance 0 5
getOriginalParameterCovariance 0 6
getOriginalParameterCovariance 0 0
getOriginalParameterCovariance 1 1
getOriginalParameterCovariance 1 2
getOriginalParameterCovariance 1 3
getOriginalParameterCovariance 1 4
getOriginalParameterCovariance 1 5
getOriginalParameterCovariance 1 6
getOriginalParameterCovariance 2 0
getOriginalParameterCovariance 2 1
getOriginalParameterCovariance 2 2
getOriginalParameterCovariance 2 3
getOriginalParameterCovariance 2 4
getOriginalParameterCovariance 2 5
getOriginalParameterCovariance 2 6
getOriginalParameterCovariance 3 0
getOriginalParameterCovariance 3 1
getOriginalParameterCovariance 3 2
getOriginalParameterCovariance 3 3
getOriginalParameterCovariance 3 4
getOriginalParameterCovariance 3 5
getOriginalParameterCovariance 3 6
getOriginalParameterCovariance 4 0
getOriginalParameterCovariance 4 1
getOriginalParameterCovariance 4 2
getOriginalParameterCovariance 4 3
getOriginalParameterCovariance 4 4
getOriginalParameterCovariance 4 5
getOriginalParameterCovariance 4 6
getOriginalParameterCovariance 5 0
getOriginalParameterCovariance 5 1
getOriginalParameterCovariance 5 2
getOriginalParameterCovariance 5 3
getOriginalParameterCovariance 5 4
getOriginalParameterCovariance 5 5
getOriginalParameterCovariance 5 6
getOriginalParameterCovariance 6 0
getOriginalParameterCovariance 6 1
getOriginalParameterCovariance 6 2
getOriginalParameterCovariance 6 3
getOriginalParameterCovariance 6 4
getOriginalParameterCovariance 6 5
getOriginalParameterCovariance 6 6

 UNCLASSIFIED

Page E-11 UNCLASSIFIED

setOriginalParameterCovariance - once for each pair

setOriginalParameterCovariance 0 0 1
setOriginalParameterCovariance 0 1 1
setOriginalParameterCovariance 0 2 1
setOriginalParameterCovariance 0 3 1
setOriginalParameterCovariance 0 4 1
setOriginalParameterCovariance 0 5 1
setOriginalParameterCovariance 0 6 1
setOriginalParameterCovariance 1 0 1
setOriginalParameterCovariance 1 1 1
setOriginalParameterCovariance 1 2 1
setOriginalParameterCovariance 1 3 1
setOriginalParameterCovariance 1 4 1
setOriginalParameterCovariance 1 5 1
setOriginalParameterCovariance 1 6 1
setOriginalParameterCovariance 2 0 1
setOriginalParameterCovariance 2 1 1
setOriginalParameterCovariance 2 2 1
setOriginalParameterCovariance 2 3 1
setOriginalParameterCovariance 2 4 1
setOriginalParameterCovariance 2 5 1
setOriginalParameterCovariance 2 6 1
setOriginalParameterCovariance 3 0 1
setOriginalParameterCovariance 3 1 1
setOriginalParameterCovariance 3 2 1
setOriginalParameterCovariance 3 3 1
setOriginalParameterCovariance 3 4 1
setOriginalParameterCovariance 3 5 1
setOriginalParameterCovariance 3 6 1
setOriginalParameterCovariance 4 0 1
setOriginalParameterCovariance 4 1 1
setOriginalParameterCovariance 4 2 1
setOriginalParameterCovariance 4 3 1
setOriginalParameterCovariance 4 4 1
setOriginalParameterCovariance 4 5 1
setOriginalParameterCovariance 4 6 1
setOriginalParameterCovariance 5 0 1
setOriginalParameterCovariance 5 1 1
setOriginalParameterCovariance 5 2 1
setOriginalParameterCovariance 5 3 1
setOriginalParameterCovariance 5 4 1
setOriginalParameterCovariance 5 5 1
setOriginalParameterCovariance 5 6 1
setOriginalParameterCovariance 6 0 1
setOriginalParameterCovariance 6 1 1
setOriginalParameterCovariance 6 2 1
setOriginalParameterCovariance 6 3 1
setOriginalParameterCovariance 6 4 1
setOriginalParameterCovariance 6 5 1
setOriginalParameterCovariance 6 6 1

getOriginalParameterCovariance - once for each pair
(to display changed values)

getOriginalParameterCovariance 0 0
getOriginalParameterCovariance 0 1
getOriginalParameterCovariance 0 2
getOriginalParameterCovariance 0 3
getOriginalParameterCovariance 0 4
getOriginalParameterCovariance 0 5
getOriginalParameterCovariance 0 6
getOriginalParameterCovariance 0 0
getOriginalParameterCovariance 1 1

 UNCLASSIFIED

Page E-12 UNCLASSIFIED

getOriginalParameterCovariance 1 2
getOriginalParameterCovariance 1 3
getOriginalParameterCovariance 1 4
getOriginalParameterCovariance 1 5
getOriginalParameterCovariance 1 6
getOriginalParameterCovariance 2 0
getOriginalParameterCovariance 2 1
getOriginalParameterCovariance 2 2
getOriginalParameterCovariance 2 3
getOriginalParameterCovariance 2 4
getOriginalParameterCovariance 2 5
getOriginalParameterCovariance 2 6
getOriginalParameterCovariance 3 0
getOriginalParameterCovariance 3 1
getOriginalParameterCovariance 3 2
getOriginalParameterCovariance 3 3
getOriginalParameterCovariance 3 4
getOriginalParameterCovariance 3 5
getOriginalParameterCovariance 3 6
getOriginalParameterCovariance 4 0
getOriginalParameterCovariance 4 1
getOriginalParameterCovariance 4 2
getOriginalParameterCovariance 4 3
getOriginalParameterCovariance 4 4
getOriginalParameterCovariance 4 5
getOriginalParameterCovariance 4 6
getOriginalParameterCovariance 5 0
getOriginalParameterCovariance 5 1
getOriginalParameterCovariance 5 2
getOriginalParameterCovariance 5 3
getOriginalParameterCovariance 5 4
getOriginalParameterCovariance 5 5
getOriginalParameterCovariance 5 6
getOriginalParameterCovariance 6 0
getOriginalParameterCovariance 6 1
getOriginalParameterCovariance 6 2
getOriginalParameterCovariance 6 3
getOriginalParameterCovariance 6 4
getOriginalParameterCovariance 6 5
getOriginalParameterCovariance 6 6

getCurrentParameterValue

getCurrentParameterValue 0
getCurrentParameterValue 1
getCurrentParameterValue 2
getCurrentParameterValue 3
getCurrentParameterValue 4
getCurrentParameterValue 5
getCurrentParameterValue 6

setCurrentParameterValue

setCurrentParameterValue 0 1
setCurrentParameterValue 1 1
setCurrentParameterValue 2 1
setCurrentParameterValue 3 1
setCurrentParameterValue 4 1
setCurrentParameterValue 5 1
setCurrentParameterValue 6 1

getCurrentParameterValue
(to display changed values)

getCurrentParameterValue 0

 UNCLASSIFIED

Page E-13 UNCLASSIFIED

getCurrentParameterValue 1
getCurrentParameterValue 2
getCurrentParameterValue 3
getCurrentParameterValue 4
getCurrentParameterValue 5
getCurrentParameterValue 6

getOriginalParameterValue

getOriginalParameterValue 0
getOriginalParameterValue 1
getOriginalParameterValue 2
getOriginalParameterValue 3
getOriginalParameterValue 4
getOriginalParameterValue 5
getOriginalParameterValue 6

setOriginalParameterValue

setOriginalParameterValue 0 1
setOriginalParameterValue 1 1
setOriginalParameterValue 2 1
setOriginalParameterValue 3 1
setOriginalParameterValue 4 1
setOriginalParameterValue 5 1
setOriginalParameterValue 6 1

getOriginalParameterValue
(to display changed values)

getOriginalParameterValue 0
getOriginalParameterValue 1
getOriginalParameterValue 2
getOriginalParameterValue 3
getOriginalParameterValue 4
getOriginalParameterValue 5
getOriginalParameterValue 6

Verify that groundToImage and imageToGround outputs are different once
parameters are modified

groundToImage1 -2345854 -4356976 4012743
imageToGround1 4480 4444 1273

getNumSystematicErrorCorrections
NOTE: No calls to other Systematic Error calls - no systematic errors
identified for GH SAR

getNumSystematicErrorCorrections

getSensorModelState

getSensorModelState

Exit

exit

E.3.3 vtsPerformance.vts
./vtsPerformance.vts.log

Classification: UNCLASSIFIED
VTS Test Script: vtsPerformance.vts

 UNCLASSIFIED

Page E-14 UNCLASSIFIED

History
Date Description Author
05-AUG-04 Initial Creation JMA

Read image file using filename input method

vtsReadFilename SAR_XRANGE3_02_9510_0_0_0.ntf

vts model setup and initialization

makeModelListFromISD GLOBAL_HAWK_RQ4A_SAR_HARRIS_2
constructSensorModelFromISD
continue

Execute 100 repetitions of transformation commands

vtsRepeat 100
groundToImage1 -2345854 -4356976 4012743
vtsRepeat 100
groundToImage2 -2345854 -4356976 4012743 2 0 0 0 2 0 0 0 2
vtsRepeat 100
imageToGround1 4480 4444 1273
vtsRepeat 100
imageToGround2 4480 4444 1 0 0 1 1273 2
vtsRepeat 100
imageToProximateImagingLocus 4480 4444 -2345854 -4356976 4012743
vtsRepeat 100
imageToRemoteImagingLocus 4480 4444

execute every other command at least once

computeGroundPartials -2345854 -4356976 4012743
computeSensorPartials1 0 -2345854 -4356976 4012743
computeSensorPartials2 0 4480 4444 -2345854 -4356976 4012743
getTrajectoryIdentifier
getReferenceDateAndTime
getImageTime 4480 4444
getSensorPosition 4480 4444
getSensorVelocity 4480 4444
getPedigree
getImageIdentifier
setImageIdentifier RESET_IMAGE_ID
getSensorIdentifier
getPlatformIdentifier
getImageSize
getValidAltitudeRange
getIlluminationDirection -2345854 -4356976 4012743
getReferencePoint
setReferencePoint -2345854 -4356976 4012743
getSensorModelName2
getCovarianceModelType
getNumParameters
getParameterName 0
getParameterType 0
getCovarianceModelParameters
getCurrentParameterCovariance 0 0
setCurrentParameterCovariance 0 0 1
getOriginalParameterCovariance 0 0
setOriginalParameterCovariance 0 0 1
getCurrentParameterValue 0
setCurrentParameterValue 0 1
getOriginalParameterValue 0
setOriginalParameterValue 0 1

 UNCLASSIFIED

Page E-15 UNCLASSIFIED

getNumSystematicErrorCorrections
getSensorModelState

Exit

exit

E.3.4 vtsPlugins.vts
./vtsPlugins.vts.log

Classification: UNCLASSIFIED
VTS Test Script: vtsPlugins.vts

History
Date Description Author
05-AUG-04 Initial Creation JMA
18-OCT-04 Corrections from witnessed dry run JMA

Read image file using bytestream input method

vtsReadByteStream SAR_XRANGE3_02_9510_0_0_0.ntf

vts setup command

makeModelListFromISD GLOBAL_HAWK_RQ4A_SAR_HARRIS_2

vtsPlugin commands

printList
findPlugin GLOBAL_HAWK_RQ4A_SAR_HARRIS_2
canSensorModelBeConstructedFromISD
constructSensorModelFromISD
getManufacturer
getNSensorModels
getReleaseDate
getSensorModelName1
getSensorModelVersion

Read image file using NITF 20 ISD input method

vtsRead20ISDFile SAR_XRANGE3_02_9510_0_0_0.ntf

vts setup and model initialization

makeModelListFromISD GLOBAL_HAWK_RQ4A_SAR_HARRIS_2
canSensorModelBeConstructedFromISD
constructSensorModelFromISD

Read image file using filename input method

vtsReadFilename SAR_XRANGE3_02_9510_0_0_0.ntf

vts setup and model initialization

makeModelListFromISD GLOBAL_HAWK_RQ4A_SAR_HARRIS_2
canSensorModelBeConstructedFromISD
constructSensorModelFromISD

Initialize model from state

canISDBeConvertedToSensorModelState
convertISDToSensorModelState

 UNCLASSIFIED

Page E-16 UNCLASSIFIED

getSensorModelNameFromSensorModelState
canSensorModelBeConstructedFromState
constructSensorModelFromState

remove plugin

removePlugin GLOBAL_HAWK_RQ4A_SAR_HARRIS_2
printList

Exit

exit

 UNCLASSIFIED

Page G-1 UNCLASSIFIED

Appendix F As-Run Test Log Forms
This appendix contains scanned copies of the as-run test log forms, signed by QA and test witnesses.

F.1 Functionality: Solaris 8 Operating System, SunONE Compiler

F.2 Functionality: Solaris 8 Operating System, GCC Compiler

F.3 Functionality: Solaris 9 Operating System, SunONE Compiler

F.4 Functionality: Solaris 9 Operating System, GCC Compiler

F.5 Performance: Unix

F.6 Analysis

 UNCLASSIFIED

Page H-1 UNCLASSIFIED

Appendix G As-Run Test Procedures
This appendix contains scanned copies of the as-run test procedures.

G.1 Functionality: Solaris 8, SunONE Compiler

G.2 Functionality: Solaris 8 Operating System, GCC Compiler

G.3 Functionality: Solaris 9 Operating System, SunONE Compiler

G.4 Functionality: Solaris 9 Operating System, GCC Compiler

G.5 Performance: Unix

G.6 Analysis

