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1. Introduction

1.1 Purpose
The purpose of this document is to serve as an information/guidance primer for the acquisition community.  The document identifies and defines sensor and platform physical and geometric parameters, with associated error components, required to rigorously construct a physical sensor model and examples of associated photogrammetric techniques employed to derive the location of an object with a statistical estimate of that location’s accuracy.  To accomplish these objectives the document defines the sensor’s type, geometries, physics, associated photogrammetric principles and equations required to establish the spatial relationship between the sensors, images, and objects imaged.
The document establishes definitive terminology and a common frame of reference for defining the identified parameters as the core metadata necessary to accomplish accurate (accuracy is the degree of veracity) and precise (precision is the degree of reproducibility) geopositioning using the output from pushbroom and whiskbroom sensor imagery systems.
1.2 Approach
This document details various parameters to consider when developing “pushbroom” and ‘whiskbroom’ sensor models.  The document structure reflects previous work on sensor standards, particularly the previous “frame” sensor model development which established a process, or template, for development of this and additional sensor class descriptions.

“Sensor” usually refers to a digital data collection device, which has both geometric and radiometric measurement aspects.  The focus of this report will be on the geometric sensor properties necessary for accurate and precise geopositioning with pushbroom or whiskbroom sensors and not on the spectral sensitivity or radiometry of the sensor.  These geometric properties are captured first as the optimal minimum set of metadata required to mathematically establish the physical relationship between a sensor’s image record and an object of interest when employing classic photogrammetric equations.  If the optimal set of parameters are not directly available, alternative platform and sensor parameters are identified that can be employed to establish the preferred set of metadata elements.
1.3 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO TC/211 211n1197, 19101 Geographic information – Reference model, as sent to the ISO Central Secretariat for registration as FDIS, December 3, 2001.

ISO TC/211 211n2047, Text for ISO 19111:2007 Geographic Information - Spatial referencing by coordinates, as sent to the ISO Central Secretariat for issuing as FDIS, July 17, 2006.

ISO TC/211 211n2171, Text for final CD 19115-2, Geographic information - Metadata - Part 2:  Extensions for imagery and gridded data, March 8, 2007.

ISO TC211 211n1017, Draft review summary from stage 0 of project 19124, Geographic information - Imagery and gridded data components, December 1, 2000.

ISO TC211 211n1869, New Work Item proposal and PDTS 19129 Geographic information - Imagery, gridded and coverage data framework, July 14, 2005.

Federal Geographic Data Committee (FGDC) Document Number FGDC-STD-012-2002, Content Standard for Digital Geospatial Metadata:  Extensions for Remote Sensing Metadata.

Open Geospatial Consortium Inc.  Transducer Markup Language Implementation Specification, Version 1.0.0, OGC® 06-010r6, December 22, 2006.

Open Geospatial Consortium Inc. Sensor Model Language (SensorML) Implementation Specification, Version 1.0, OGC® 07-000, February 27, 2007.

Community Sensor Model (CSM) Technical Requirements Document, Version 3.0, December 15, 2005.

North Atlantic Treaty Organization (NATO) Standardization Agreement (STANAG), Air Reconnaissance Primary Imagery Data Standard, Base document STANAG 7023 Edition 3, June 29, 2005.

National Geospatial Intelligence Agency.  National Imagery Transmission Format Version 2.1 For The National Imagery Transmission Format Standard, MIL-STD-2500C, May 1, 2006.
National Geospatial Intelligence Agency, The Compendium of Controlled Extensions (CE) for the National Imagery Transmission Format (NITF), SDTI-0002, August 2007

National Imagery and Mapping Agency.  System Generic Model, Part 5, Generic Sensors, December 16, 1996.

Mikhail, Edward M., James S. Bethel, and J. Chris McGlone.  Introduction to Modern Photogrammetry. New York: John Wiley & Sons, Inc, 2001.

NGA Motion Imagery Standards Board (MISB)  Engineering Guidance 0801, Nov 2008

Stevens, B., Lewis, F.  Aircraft Control and Simulation, 2nd Edition. Wiley-Interscience; 2nd edition, October 6, 2003 

Community Sensor Model Working Group.  Information Guidance Document  Frame Sensor Model Metadata Profile Supporting Precise Geopositioning (FSMMG), Version 2, May 2009 
1.4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.
1.4.1. adjustable model parameters

model parameters that can be refined using available additional information such as ground control points, to improve or enhance modelling corrections
1.4.2. along-track
direction in which the collection platform moves
1.4.3. area recording
“instantaneously” recording an image in a single frame
1.4.4. attitude

orientation of a body, described by the angles between the axes of that body’s coordinate system and the axes of an external coordinate system [ISO 19116]
1.4.5. attribute

named property of an entity [ISO/IEC 2382-17]
1.4.6. calibrated focal length

distance between the projection center and the image plane that is the result of balancing positive and negative radial lens distortions during sensor calibration
1.4.7. coordinate

one of a sequence of n numbers designating the position of a point in n-dimensional space [ISO 19111]

NOTE:  In a coordinate reference system, the numbers must be qualified by units.
1.4.8. coordinate reference system

coordinate system that is related to the real world by a datum [ISO 19111]

NOTE:  For geodetic and vertical datums, it will be related to the Earth.
1.4.9. coordinate system

set of mathematical rules for specifying how coordinates are to be assigned to points [ISO 19111]
1.4.10. cross-track
perpendicular to the direction in which the collection platform moves
1.4.11. data

reinterpretable representation of information in a formalised manner suitable for communication, interpretation, or processing [ISO/IEC 2382-1]
1.4.12. detector element orientation
angular orientation with respect to the sensor coordinate system of the detector elements within the measuring instrument detector array
1.4.13. error propagation

determination of the covariances of calculated quantities from the input covariances of known values

1.4.14. frame sensor

sensor that detects and records all the picture element (pixel) data for a single image (frame) at an instant of time
1.4.15. framelet
an image unit of the complete imaged scene formed by detection and recording of all picture element (pixel) data from the detector array at an instant of time
1.4.16. geodetic coordinate system

coordinate system in which position is specified by geodetic latitude, geodetic longitude and (in the three-dimensional case) ellipsoidal height [ISO 19111]

1.4.17. geodetic datum

datum describing the relationship of a coordinate system to the Earth [ISO 19111]

NOTE 1:  In most cases, the geodetic datum includes an ellipsoid description.
NOTE 2:  The term and this Technical Specification may be applicable to some other celestial bodies.
1.4.18. geographic information

information concerning phenomena implicitly or explicitly associated with a location relative to the Earth [ISO 19101]
1.4.19. geographic location

longitude, latitude and elevation of a ground or elevated point
1.4.20. geolocating

geopositioning an object using a sensor model
1.4.21. geopositioning

determining the ground coordinates of an object from image coordinates
1.4.22. grid
network composed of two or more sets of curves in which the members of each set intersect the members of the other sets in an algorithmic way [ISO 19123]

NOTE: The curves partition a space into grid cells.

1.4.23. ground control point

point on the ground that has accurately known geographic location
1.4.24. image

coverage whose attribute values are a numerical representation of a remotely sensed physical parameter
NOTE:  The physical parameters are the result of measurement by a sensor or a prediction from a model.
1.4.25. image coordinates

coordinates with respect to a Cartesian coordinate system of an image

NOTE:  The image coordinates can be in pixel or in a measure of length (linear measure).
1.4.26. image distortion

deviation in the location of an actual image point from its theoretically correct position according to the geometry of the imaging process
1.4.27. image-identifiable ground control point

ground control point associated with a marker or other object on the ground that can be recognized in an image
NOTE:  The ground control point may be marked in the image, or the user may be provided with an unambiguous description of the ground control point so that it can be found in the image.
1.4.28. image plane

plane behind an imaging lens where images of objects within the depth of field of the lens are in focus

1.4.29. image point

point on the image that uniquely represents an object point
1.4.30. imagery

representation of objects and phenomena as sensed or detected (by camera, infrared and multispectral scanners, radar and photometers) and of objects as images through electronic and optical techniques [19101-2]
1.4.31. imaging operation
process of converting reflected object illumination to imagery at exposure time

1.4.32. instantaneous field of view
objective field of view of the sensor detector array in the focal plane at time (t)
1.4.33. line recording

recording a single image line at one time and constructing a larger image from a set of adjacent lines
1.4.34. metadata
data about data [ISO 19115]
1.4.35. nodal points
in optics, the front and rear nodal points have the property that a ray aimed at one of them will be refracted by the lens such that it appears to have come from the other, and with the same angle with respect to the optical axis. If the medium on both sides of the optical system is the same (e.g., air), the front and rear nodal points will coincide with the front and rear principal planes, respectively.  A compound lens (a lens made of multiple glass elements) has two nodal points. The front nodal point is the point in the optical system in which all the rays of light which enter the lens converge. The rear nodal point is the point in the optical system from which all the rays of light leaving the lens seem to radiate. That is, it’s the point on the optical axis from which the emergent ray leaves.  The focal length of the lens is measured from the rear nodal point.
1.4.36. object point

point in the object space that is imaged by a sensor
NOTE:  In remote sensing and aerial photogrammetry an object point is a point defined in the ground coordinate reference system.
1.4.37. objective

optical element that receives light from the object and forms the first or primary image of an optical system

1.4.38. passive sensor

sensor that detects and collects energy that already exists (such as reflected energy from the Sun)

1.4.39. platform coordinate reference system

coordinate reference system fixed to the collection platform within which positions on the collection platform are defined

1.4.40. pixel

picture element [ISO 19101-2]

1.4.41. principal point of autocollimation

point of intersection between the image plane and the normal from the projection center to that plane
1.4.42. projection center

point located in three dimensions through which all rays between object points and image points appear to pass geometrically.

NOTE:  It is represented by the rear nodal point of the imaging lens system.
1.4.43. Pushbroom sensor
Sensor that records a single cross-track image at one instance of time and constructs a larger image from a set of adjacent lines resulting from the along-track motion of the sensor
1.4.44. remote sensing

collection and interpretation of information about an object without being in physical contact with the object
1.4.45. sensor

element of a measuring instrument or measuring chain that is directly affected by the measurand [ISO 19101-2]
1.4.46. sensor model

mathematical description of the relationship between the three-dimensional object space and the associated two-dimensional image plane
1.4.47. swath
the ground space projection of the path observed by the sensor using the complete range of cross-track collection angles

1.4.48. whiskbroom sensor
sensor that scans a cross-track image line of framelets and constructs a larger image from the set of adjacent lines using the along-track motion of the sensor’s collection platform. Typically, a mirror scans the platform’s path (ground track), reflecting light into a single detector which collects data one pixel at a time
1.5 Symbols and abbreviated terms
1.5.1 Abbreviated terms

3D
Three Dimensional

AGL
Above Ground Level

API
Application Program Interface

ASC
Aeronautical Systems Center

CCD
Charge-Coupled Device

CCS
Common Coordinate System

CE
Controlled Extension

CM
Configuration Management

COTS
Commercial Off-The-Shelf

CSMS
Community Sensor Model Standard

CSMWG
Community Sensor Model Working Group

D
Down

DISA
Defense Information Systems Agency

DISR
DoD Information Technology Standards Registry

DoD
Department of Defense

ECEF
Earth-centered, Earth-fixed

EGM
Earth Gravity Model

ENU
East-North-Up

EO
Exterior Orientation

FGDC
Federal Geographic Data Committee
FMC
Forward Motion Compensation
FOV
Field-of-view 

FPA
Focal Plane Array

FR&T
Future Requirements and Technologies

FSP
Flight Stabilization Platform

GEOTRANS
Geographic Translator

GH
Gauss-Helmert

GM
Gauss-Markov

GPS
Global Positioning System

GRS
Geodetic Reference System

GWG
Geospatial Intelligence Standards Working Group

IFOV
Instantaneous-field-of-view
 
IFSAR
Interferometric Synthetic Aperture Radar

IMINT
Imagery Intelligence
IMU
Inertial Measurement Unit
INS
Inertial Navigation System

IR
Infrared

ISO
International Organization for Standardization

LIDAR
Light Detecting and Ranging

LSR
Local Space Rectangular

MSL
Mean Sea Level

NATO
North Atlantic Treaty Organization

NED
North-East-Down

NGA
National Geospatial-Intelligence Agency (former NIMA)

NIMA
National Imagery and Mapping Agency

NITF
National Imagery Transmission Format

OGC
Open Geospatial Consortium, Inc.

S2AG
Sensor Standards Acquisition Guide

SAR
Synthetic Aperture Radar

SCS
Sensor Coordinate System
SDTI-0002
Compendium of Controlled Extensions for the National Imagery Transmission Format
SENSRB
SDTI-0002 Appendix E: Airborne Data Element Extensions 2nd generation
SensorML
Sensor Markup Language

STANAG
Standardization Agreement (NATO)

STD
Standard

TML
Transducer Markup Language

TRE
Tagged Record Extension

TRM
True Replacement Model

USR
Universal Space Rectangular

UTC
Coordinated Universal Time

WGS
World Geodetic System
ZUPT
Zero Velocity Update
1.5.2 Symbols

A
object vector

A(t)
normal from earth surface to satellite array perspective center

a
image vector
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orbital ellipse semi-major axis

b
orbital ellipse semi-minor axis

C
(instantaneous) perspective center

dM
INS to Sensor correction matrix

dR
GPS to Sensor correction vector

dx 
pixel width, mm

dy
pixel height, mm

E
eccentric anomaly

e
ellipse eccentricity
Fx
functional form of the collinearity for image x-coordinate

Fy
functional form of the collinearity for image y-coordinate

FSP
Flight Stabilization Platform
f
sensor
fc
calibrated focal length, mm

G
Gravitational Constant
g
Geocentric
H
sensor altitude, m HAE; also platform heading, rotation angle around the Z1-axis (ground inertial system)

HAE
height above ellipsoid

Hmsl
sensor altitude in kilometers referenced to MSL

hmsl
object elevation in kilometers referenced to MSL

h
object elevation in meters referenced to HAE

i
image section number

i
inclination of the orbital plane

K
refraction constant, micro-radians

k
arbitrary constant
k1, k2, k3
first, second, and third order radial distortion coefficients, respectively

km




kilometer

L
total number of lines in image
ℓ
image line coordinate

ℓbd
image line number at boundary between first and second image sections
ℓi
line number
M
mean anomaly (ellipse)

M
rotation matrix (various)

mij
an element of rotation matrix M,

m
meter
ns
number of image sections
n
NED
N
number of pixels in scan line

Ny
number of pixels in array; samples (columns) on the collection array

P
pitch rotation angle around Y2-axis (once rotated Y1-axis)
p
platform
p1, p2
decentering coefficients

r
radial distance and image
R
roll angle, between the wing position and the horizontal plane (non-sequential)

R
satellite platform position, geocentric vector
rGPS
lever-arm vector from GPS to IMU (INS)

rINS_SEN
lever-arm vector from IMU (INS) to sensor origin

s
pixel sample (column) number, and sensor
s1, s2, s’1, s’2
coordinate system translation components

SN
trace of normal from earth surface to satellite

t
time 

U,V,W
shorthand notation for components of the object vector A referred to the image coordinate system

X,Y,Z
right-handed Cartesian ground coordinate system

XP,YP,ZP
satellite local reference system (Universal Space Rectangular)

x,y,z
right-handed Cartesian image coordinate system

xs(t),ys(t),zs(t)
scan line pixels sensor coordinate system coordinates

xCCSscale, yCCSscale
whiskbroom panoramic effect scale factor  
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true anomaly (instantaneous angle from satellite to perigee), also angle the refracted ray makes with local vertical
Δ
look-forward/look-back angle

λ
satellite ground track geographic longitude

λs
satellite inertial longitude

λe
earth rotation longitude correction
Ψ
satellite geocentric latitude
ω
argument of perigee

ωs(t), (s(t), κs(t)
sensor coordinate system exterior orientation parameters

pitch, latitude

(
yaw
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longitude of the ascending node

(
wing position rotation

(ij
covariance matrix element
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covariance matrix

τ
satellite travel angle

(d
atmospheric refraction angular displacement
(xlens
total lens radial distortion and decentering distortion, x-component

(ylens
total lens radial distortion and decentering distortion, y-component

(xradial
radial optical distortion x-component 

(yradial
radial optical distortion y-component 

(xref
atmospheric refraction, x-component

(yref
atmospheric refraction, y-component


[image: image5.wmf]w


roll

ωe
angular velocity of the earth

ωm
mean angular velocity
2. Overview for Coordinate System Descriptions and Relationships
2.1 General Coordinate Reference System Considerations
A mathematical relationship exists between the position of an object on the earth’s surface and its image as recorded by an overhead sensor.  The objective is to coherently describe that relationship so that it can be used by image exploitation systems and applications.  Well established standards have already defined most of the common reference systems that will be used within this document; e.g., ISO 19111 Geographic Information, STANAG 7023 Air Reconnaissance Primary Imagery Data Standard, and Federal Geographic Data Committee (FGDC) Document Number FGDC-STD-012-2002, Content Standard for Digital Geospatial Metadata.
Typically, an image’s spatial position will be given in relation to a coordinate system locally defined or attached to the sensor.  Likewise, the corresponding object’s position will be defined with respect to a coordinate system attached to an earth-based datum.  Therefore, with the assumption that both of the coordinate systems in use are orthogonal, the transformation from a sensor-based coordinate system to an earth-based coordinate system is accomplished via a sequence of translations, rotations, and scaling of the sensor’s coordinate system origin and axes until the sensor coordinate system coincides with the earth-based coordinate system’s origin and axes.

The sensor position may be described in many ways and relative to any number of coordinate systems particularly those of the aerial or satellite platform. There may also be one or more gimbals to which the sensor is attached, each with its own coordinate system, in addition to the platform’s positional reference to the Global Positioning System (GPS) and on-board inertial navigation system (INS).  Transforming between each coordinate system into the common frames of reference of the image and earth-centered coordinates can be incorporated into the mathematical model of the pushbroom or whiskbroom sensor.

Airborne and satellite platforms normally employ GPS and INS systems to define position and attitude.  The GPS antenna and the INS gyros and accelerometers typically are not physically embedded with the sensor as illustrated in Figure 1.
For a GPS receiver, the point to which all observations refer is the phase center of the antenna.  The analogous point for an Inertial Measurement Unit (IMU) is the intersection of the three sensitivity axes.  The physical offset between the two generally is termed the ‘lever-arm’.  Denoting the ‘lever-arm’ vector from the GPS antenna phase center to the IMU is the vector rGPS.  A similar ‘lever-arm’ vector from INS to the sensor, rINS-SEN, relates platform position, attitude, and velocity information to the sensor.


[image: image6]
Figure 1.  Nominal Relative GPS to INS to Sensor Relationship
2.2 Nomenclature

The terms Inertial Measurement Unit (IMU) and Inertial Navigation System (INS) are often confused. An IMU is an instrument that measures specific forces and angular rates relative to an inertial frame of reference. An INS contains an IMU as one of its components, but also includes the ability to use the IMU measurements to derive meaningful position, velocity and attitude information.

The IMU actually measures specific forces, which are related to the applied accelerations through the gravity field.  The Inertial Navigation System (INS), which contains an IMU as one of its components, integrates the rotation rates to obtain orientation changes, iteratively integrates the accelerations to first obtain velocities and doubly integrates the accelerations to obtain position increments (Jekeli, 2000) employing the Kalman filtering mathematical process that estimates the correct state of a system from measurements that contain random errors. The integration of the rotation rates implies that vehicle orientation is obtained as a natural byproduct of the navigation solution, thus adding potentially useful information to certain applications since orientation is not usually a product of GPS-only systems.  The following block diagram (Figure 2) illustrates the typical GPS/INS process.


[image: image7]
Figure 2.  GPS / INS Processing Block Diagram
Furthermore, the integration process acts as a low-pass filter and thus produces very accurate short-term position and velocity differences.  Also, in contrast to GPS which typically updates position and velocity at 1 to 20 Hz, the IMU is capable of making measurements at several hundred Hz. Although rarely processed at this rate, output rates of 50 Hz or higher are not uncommon.  Despite the above advantages, sensor inaccuracies such as gyro drifts and accelerometer biases cause a rapid degradation in pure-inertial position quality. To this end, higher quality IMUs, obtained at significantly higher cost, exhibit significantly slower position degradation. However, in many applications, aviation and satellite being obvious ones, the traditional approach to obtain Zero Velocity Updates (ZUPTs) through periodic stops of the vehicle are impractical, if not impossible. Such applications therefore require either a very accurate IMU or another means of bounding the errors.  Given the complimentary nature of GPS and INS, their integration represents the best opportunity for meeting the ever-increasing accuracy and availability demands of commercial users. The advantages of GPS/INS integrated systems, relative to GPS or INS only, are reported to be a full position, velocity and attitude solution, improved accuracy and availability, smoother trajectories, greater integrity and reduced susceptibility to jamming and interference. The inertial solution also enhances GPS ambiguity resolution performance. These benefits have been exploited for a wide variety of applications including airborne mapping, airborne positioning, and mobile mapping systems.

Position accuracy during complete GPS data outages (i.e., absence of updates) is a direct reflection of system performance.  An INS is the perfect complement to GPS.  Orthogonally-mounted accelerometers and angular rate sensors (gyros) that comprise the IMU which, when combined with the mechanization equations (and system error estimation), comprises the INS itself.  The identified offsets in position and attitude (GPS to INS to sensor) must be incorporated in the collinearity equations described in Section ‎4.
An overview of some of the coordinate system reference frames under construction for an airborne platform is shown in Figure 3.


[image: image8]
Figure 3.  Multiple Coordinate Reference Frames
To arrive at a common coordinate system orientation, required platform component orientations will be defined in terms of the physical relationship to the sensor, including any gimbal mounting information not included within the sensor itself.  These components will be transformed using a sequence of rotations and translations, described in detail in Appendix B.  For purposes of this development, the “right-hand” orthogonal coordinate system
 will be followed throughout.
2.3 Earth Coordinate Reference System
To simplify the pushbroom and whiskbroom sensor model development, a stationary, non-time dependent coordinate reference frame is needed to which all other reference frames may be mathematically defined.  We select a coordinate system (X,Y,Z) which is Earth-centered, Earth-fixed (ECEF), as shown in Figure 4; with the X-Y plane containing the equator, X intersects, in the positive direction, the Greenwich Meridian (from where longitude is measured; longitude equals 0-degrees at Y equal to zero), Z is parallel to the Earth’s rotation axis and has a positive direction toward the North pole, Y is in the equatorial plane and perpendicular to X and completes a right-handed coordinate system; i.e., the cross-product of X and Y is a vector in the direction of Z.  This system is also known as a Geocentric coordinate system.


[image: image9]
Figure 4.  Earth-centered and local surface (ENU) coordinate frames

Therefore any point (A) on the reference surface may be described in (X,Y,Z) geocentric coordinates, or alternatively in the equivalent geodetic latitude and longitude (the curvilinear coordinates on the surface of the ellipsoid).  Conversion routines for the transformation or inverse transformation between geocentric and geodetic coordinates are well established.  See Appendix B.  Likewise, this point can be described relative to a local reference system attached to the surface, specifically in an East-North-Up (ENU) orientation; where North is tangent to the local prime meridian and pointing North, Up vector pointing to the local zenith, and East completes a right-hand Cartesian coordinate system.  In the literature on this coordinate system, it is frequently referred to as the Local Space Rectangular (LSR) system. Throughout this paper, the point A will be referred to as either the ground or object point.  Refer to Figure 3, where the earth-centered coordinate system is (X,Y,Z) and the local reference system is (X
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2.4 Platform Coordinate Reference System
2.4.1. Airborne
A platform body coordinate reference system is defined with respect to its center of navigation (the Inertial Navigation System) that is fixed to the structure of the vehicle - in this case the aircraft as shown in Figure 5.  The axes are defined as: Xp positive along the heading of the platform, which is the platform roll axis; Yp positive in the direction of the starboard (right) wing, along the pitch axis such that the XpYp plane is horizontal when the aircraft is at rest; and Zp positive down, along the yaw axis.  A second platform coordinate reference system is also defined with respect to a North-East-Down (NED) reference system with its origin at the center of navigation.  In horizontal flight the platform Zp axis is aligned with the Down (D) axis, and the North-East plane is parallel to a tangent plane to the Earth surface reference ellipsoid at the intersection of the D axis, Figure 6.  The three critical flight dynamics parameters are the angles of rotation in three dimensions about axes through the vehicle's center of mass, known as pitch, roll and yaw that are in a specific sequence of Euler angles used in aerospace applications to define the relative orientation of the vehicle. The three angles specified in this formulation are defined as the roll angle, pitch angle, and yaw angle.  If these angles are recorded in a non-sequential manner, the equations in Appendix C are provided to demonstrate the processing required to convert non-sequential angles to the sequential angles for photogrammetric processing.

To initiate the transformations between the various coordinate systems depicted in Figure 3 and Figure 4, the platform orientation is defined in terms of its physical relation (rotation) about this local reference; see Appendix A.  These rotations are defined as follows:

Platform heading - angle from the north axis of the NED, measured in the horizontal plane, to the projection of the platform positive roll axis, Xp,, in the horizontal plane (positive from north to east).
Platform pitch - angle from the NED horizontal plane to the platform positive roll axis, Xp-axis (positive when +Xp is above the NED horizontal plane, or nose up).

Platform roll – rotation angle about the platform roll axis; positive if the platform positive pitch axis, Yp, lies below the NED horizontal plane (right wing down).

Figure 5[image: image262.wmf]w

.  Platform Rotations about local NED coordinate system
              
[image: image13]
Figure 6.  Platform body coordinate reference frame and local (NED) frame

The NED can be further defined to relate the local platform center of navigation through a sequence of angular rotations to the local Earth surface (ENU) reference Figure 7.  The ENU may be a very localized LSR or it may be a preferred local/regional datum.  (As an example, it could be the GRS80 ellipsoid, which has a flattening parameter varying slightly from that of WGS84, referenced to the Geocentric Datum of Australia.) In turn, the local surface-based ENU reference can be translated and rotated into the recommended ECEF frame; namely, the WGS84 datum’s ellipsoidal X,Y,Z or its equivalent geodetic latitude and longitude with height, using the vertical datum from a gravity-adjusted, vector-based reference such as EGM2008
.

[image: image14]
Figure 7.  Earth and local platform (NED) coordinate frames
2.4.2. Satellite Platform Coordinate System
2.4.2.1. General
The satellite local orbit (platform) reference frame (Figure 8) has its origin, as the airborne platform, at the satellite’s center of mass (the Inertial Measurement System).  In contrast to the airborne platform, the satellite employs an East-North-Up local reference system that is identified as a Universal Space Rectangular (USR) coordinate system.  The USR is defined with the yaw axis (ZP) as an extension of the geocentric vector pointing radially away from the earth, the roll axis (YP) is in the orbital plane perpendicular to the yaw axis, along the velocity vector; and the pitch axis (XP) is perpendicular to both the yaw and roll axes, completing a right-handed coordinate system.  Satellite attitude rotational values are generally computed in this local (USR) coordinate system, often from stellar observations or the on-board INS data.  In stabilized platform systems, the IMU can be kept aligned to a particular navigation frame of interest (e.g., the ECEF frame) using external torques derived from the measured angular rates (Jekeli, 2000).  However, in a strap down inertial system, the IMU is rigidly mounted to the vehicle to be positioned and thus can have an arbitrary orientation.


[image: image15]
Figure 8.  Satellite Platform coordinate system with respect to ECEF
Figure 9 provides an overall schematic of the coordinate reference system for satellite applications.  Note that SN is the trace on the earth surface of the intersection of the normal vector from the earth center to the satellite with the earth surface.  A(t) is the location on the SN trace of that intersection of the normal to the array through the perspective center at time t.


[image: image16]
Figure 9.  Satellite Reference System Schematic
A satellite provides a stable and, more importantly, a predictable platform.  Thus one can employ constraints dictated by the Kepler’s laws of motion to achieve convergence.  In particular, the following laws can be used to position a satellite at any desired location in the orbit, given the value of its independent parameters.
- 
The orbits are elliptical.

- 
The vector from the earth’s center to the satellite sweeps equal areas in equal intervals of time.

-
The time period (P) is given by P2 = 
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 is the semi-major axis of the orbital ellipse, G is the gravitational constant, and Me is the mass of the Earth (GMe = 398600.4415 km3 / s2).

2.4.2.2. Platform Position extensions for satellite implementation
The ideal elliptical orbit, with the earth at one node, is described by 6 Keplerian elements:
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true anomaly (instantaneous angle from satellite to perigee)

ω
argument of perigee
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longitude of the ascending node
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semi-major axis of the elliptical orbit

e
eccentricity of the orbital ellipse
i
inclination of the orbital plane
The Kepler parameters depicted in Figure 10 and Figure 11 define an ellipse, orient that ellipse with respect to the earth, and place the satellite on the ellipse at a particular time.  The size and shape of the orbital ellipse is defined by the semi-major axis of the ellipse “
[image: image22.wmf]a

” and the numerical eccentricity “e”.  The orientation of the orbital plane against the equator is defined by orbital inclination i and the right ascension of the ascending node Ω.  The argument of perigee ω and the true anomaly or travel angle τ define the position of the satellite on the ellipse at a particular time t.  The satellite platform position is represented by the geocentric vector R.  In terms of polar coordinates, the vector R is defined by the geocentric latitude Ψ, the geographic longitude λ and the geocentric radius R as functions of time, see Figure 11.

[image: image23]
Figure 10.  Orbital Geometry

[image: image24]
Figure 11.  Keplerian Orbital Elements
2.4.2.3. Satellite Platform Time
Time t is the only independent variable in the orbital relations.  Because of the Keplerian character of the satellite motion, the travel angle τ is not directly proportional to the elapsed time.  With knowledge of the mean angular velocity ωm, the relation between τ and t is established by the following three equations:

cos E = 
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Eq. 1
M  =  E – e sin E
Eq. 2
t =  M / ωm
Eq. 3
where E is called the eccentric anomaly and M is called the mean anomaly.  Equations 1-3 express the τ–to–t time conversion:

t = F(t)(τ)
Eq. 4
2.4.2.4. Earth Rotation Effect
The combination of satellite travel and earth motion results in a composite motion which causes the satellite ground track on earth.  The effect of earth rotation with respect to the satellite travel angle τ can be expressed by the satellite’s geocentric latitude Ψ and the satellite’s geographic ground track longitude λ as:

sin Ψ = sin (ω +  τ) sin i

tan λs = tan (ω +  τ) cos i

λ = λs  + λE
Eq. 5
where λ is the satellite ground track longitude,  λs is the inertial satellite longitude, and  λE =  ωEt is the longitude change with the angular velocity of the earth.
Given the orbital ellipse semi-minor axis as “b”, the geographic latitude, Φ, can be derived from the geocentric latitude by:

tan Φ  = (a2 / b2) ∙ tan Ψ 
Eq. 6
2.4.2.5. Atmospheric Refraction
Adjustments may be required to account for bending of the image ray path as a result of atmospheric effects.  These influences generally increase as altitude and look angles increase.  Several methods, of varying complexity, are available to approximate the needed adjustments, including, for example, consideration of temperature, pressure, relative humidity, and wavelength.  The metadata defined in Section 7 allows for the definition, by altitude bands, of the atmospheric correction and the algorithm employed.  For purposes of this paper, we have chosen to adopt the following simple approximation (Mikhail, 2001), where ( is the angle the refracted ray makes with the local vertical, the angular displacement (d (micro-radians) is given by:
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Eq. 7
Hmsl is altitude (km, MSL) of the sensor, hmsl is the object elevation (km, MSL), and K is the refraction constant (micro-radians).  This equation is a good approximation for collection parameters resulting when the optical axis coincides with the vertical axis (ZT, Figure 3) from the ground object.  Depending on the level of precision required, off-vertical collections may require more rigorous models.  Note: Our parallel development of a “standard” sensor model proposes to use units of meters, referenced to height above ellipsoid (HAE), for sensor altitude and object elevation, thus the distinction between Hmsl, hmsl (km, MSL) as used in the above equation and H, h (m, HAE) in the forthcoming standard is highlighted here.
Therefore, given image coordinates (
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), the resulting coordinates (x’ref,y’ref) are:
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Eq. 8
It follows, then, that the refraction correction components ((xref, (yref) are:
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Eq. 9
This correction is further developed for the Pushbroom and Whiskbroom sensor in Section ‎5.1.

3. Pushbroom and Whiskbroom Sensor Descriptions
3.4 Pushbroom Sensor Coordinate System
3.4.1. Sensor Coordinate Reference System

All photogrammetric development in this document is based on the use of the positive image located between the exposure station (or perspective center) and the ground.  The image record reference coordinate system is defined in Figure 12 for the Pushbroom sensor, such that the positive x-axis is in the direction of the image row (increasing column indices) and the z-axis is along the optical axis which is perpendicular to the lens plane, and pointing away from the collection array.  To establish an unambiguous alignment between the image record and platform reference systems, at rest, the z-axis (zr) will be parallel, but in opposite direction, to the platform Zp–axis at nadir.  

Depending on the sensor physical installation, the sensor coordinate system may be reported directly to the gimbals to which the sensor is attached or relative to the platform’s center of navigation (INS), which in turn may be referenced to the Global Positioning System (GPS) or other datum based coordinate reference system as described in Section ‎2.1.  Since gimbal information is unique to each sensor/platform design, the intermediate rotations and translations required to align these specific components will not be addressed.  However, an example case is treated in Appendix A.

For collectors that are cameras, i.e., film-based, factors that may not pertain to a digital sensor must be accounted for, e.g., distortion factors associated with film deformation.  Although digital sensors may not suffer exactly these same distortion factors, they may have their own unique distortions, such as unevenly spaced elements, which can be treated by the same equations.  The transformation from line/sample to x,y coordinates will accommodate both media, as will also be shown in Section ‎3.3.

[image: image33]
Figure 12.  Pushbroom Image Record Coordinate Reference Frame

A pushbroom sensor is a digital collector with a linear collection array made up of a line of elements, or picture elements (pixels), at the focal plane to scan over a two dimensional scene.  For the pushbroom sensor model, the along track displacement of all recorded pixels of a scan line is set to zero.  For the across track pixel coordinates, a constant, non-rotated spacing of successive pixels is assumed.  (Some manufacturers rotate the elements in the array to improve resolution, but for this development non-rotated elements (pixels) is assumed.) The focal length in pixel units is calculated using the maximum scan angle (θmax) and the number of pixels (N) in one scan line (Figure 13).

The origin of the sensor coordinate system (SCS) (xs, ys,zs) in Figure 14 and Figure 15 is the instantaneous perspective center of that framelet.  At some point of time, the detector array energy values are recorded and one framelet of imagery consisting of a line of pixels is acquired.  Since each line of pixels is scanned at a different time, each scan line of pixels has its own SCS set of exterior orientation parameters (xs(t), ys(t), zs(t), ωs(t), (s(t), and κs(t)).  A strip image consists of a number of consecutive framelets, each with its own exterior orientation parameters.


[image: image34]
Figure 13.  Pushbroom sensor model


[image: image35]
Figure 14.  Pushbroom collection geometry

Pixel coordinates for one pushbroom sensor line are then given as follows:
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Eq. 10
and the focal length in pixel units given as:
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Eq. 11
3.4.2. Pushbroom Common Coordinate System (CCS)
The common coordinate system (CCS) is also referred to as a “frame-like coordinate system”.  In the pushbroom sensor, the CCS is the coordinate system for the composite image formed by aggregating the individual framelets.  Each of those framelets effectively only ‘y’ (the array) and ‘z’ (the focal length) dimensions, since the x origin is always a singular value, 0 (zero) as shown in Figure 15.  An imaged object within a framelet will have fraction of a pixel value appended to the pixel origin.  Some references denote framelets as “one-dimensional.”  Note that the column direction is the y-direction of the imaging array, which, as sited earlier, is perpendicular to the x-direction of collection or scanning.  This explains why this mode of imaging is called “Pushbroom” imaging.  For this development, the origin is defined at the center of each pixel which has integer values in both row and column, or line (ℓ) and sample (s) coordinates for the aggregate strip image.  This is not to be confused with historical Community Sensor Model (CSM) National Image Transmission Format (NITF) defined (ℓ, s) image coordinate system where the integer values origin is at the corner of a pixel.
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Figure 15.  Generic Relationship between CCS and SCS

3.4.3. Pushbroom Pixel-to-Image Coordinate Transformation (CCS to SCS)
In accordance with the convention above, conversion of the pixel coordinates to image coordinates will be as follows for the common coordinate system of the framelet.

xs(t) = ( ℓ(t) - (t • dx – (dx/2))) / dx
Eq. 12
ys(t) = ( s(t) – (dy • Ny / 2))
Eq. 13
where

ℓ(t), s(t)  
line (row) and sample (column) in CCS, respectively at scan time (t) (starting with ℓ = 0)

dx
lineal dimension of detector, i.e., pixel size;  in line of scan direction (typically the line-of-flight)

dy
lineal dimension of detector, i.e., pixel size in the cross track direction

Ny
number of pixels (columns or samples) in the array
For example, in Figure 15, if dx =10 = dy, for ℓ(3), s(3), the origin of the framelet is

Xs(3) = (25 – ((3•10) – 10/2)/10 = (25 – (25))/10 = 0 and 

Ys(3) = (45 – (10 • (9/2))) = (45 – (45)) = 0 

and if the object measurement was in pixel 9 for t =3, with ℓ(3) = 28, and s(3) =88, then 

Xs(3) = (28 – ((3•10) – (10/2)) / 10 = 0.3 and 

Ys(3) = (88 – (10 (9/2))) = (88 – 45) = 43

3.4.4. Pushbroom Sensor Time
Time is proportional to the integer line number coordinate of a point measured in an axis parallel to the scan direction.  For pushbroom sensors, the formula for time is:
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Eq. 14
where

t
time corresponding to a framelet containing a point on the image

coord
line number parallel to the sensor scan direction of the framelet containing the point

t0 
time corresponding to the framelet containing the reference point 0

coord0
line number coordinate parallel to the scan direction of the framelet containing the reference point 0

dtCOORD
time interval corresponding to a unit interval in line coordinates

For all sensors on an airborne platform the reference point 0 can be the same as the image center and t0 can be set to zero without loss of generality in the time equations if this value is not known a priori.

For all sensors on a satellite platform if the value of t0 is not known, the satellite orbit is assumed circular.  Refined estimates of t0 and other unknown orbit parameters are solved for in a resection or triangulation procedure where the correction parameters are initialized to zeros and are not adjusted.
3.4.5. Imaging Process
Some Pushbroom sensors provide a ‘look-forward’ / ‘look-back’ capability of up to twenty (20) degrees, shown as the angle Δ in Figure 16, to minimize glint. Other implementations incorporate multiple arrays.  For this document a pushbroom sensor that employs a single linear array oriented perpendicular to the platform flight direction will be modeled.  As the platform travels along its trajectory, a strip image of the terrain is acquired as the array sweeps forward, one line for each framelet imaged by the array.  Figure 16 is a schematic of the imaging process.  (The positive image plane size is greatly exaggerated for illustration purposes only.)  The location of the sensor, as depicted by the instantaneous perspective center (L) in the figure, and its orientation, vary, based on platform and sensor movement in space and time, from image line to image line.  Six Exterior Orientation (EO) unknowns (Xs(t), Ys(t), Zs(t), ωs(t), (s(t), and κs(t)) exist for each image line, a framelet.  As a frame image, any pixel in that frame (line) is related to the corresponding (imaged) object point according to the standard collinearity equations. The exterior orientation elements are explicitly time dependent.  Every strip image has multiple framelets. Thus the number of unknown parameters describing the sensor external orientation, (six for each image line) to be solved for in the aggregated strip image, becomes unwieldy.  A bundle adjustment would be impractical since the collinearity solution requires a minimum of three Ground Control Points to solve for the six EO unknowns. A Pushbroom strip image adjustment would be overwhelmed by its ground control point dependency.  An alternative approach is used, relying on the conditions that the elements associated with one scan line are tightly correlated with those of neighboring lines, as will be explained later.


[image: image39]
Figure 16.  Pushbroom collection (collinearity condition)

3.4.6. System operation dependencies
Due to the linear sensor geometry, in general, the sensor ( (pitch) angle is highly correlated with position along the flight line and the sensor ω (roll) angle is correlated with the cross-strip linear displacement.  To improve solving for exterior orientation elements, it is advantageous to use the support information provided with the imaging mission, such as that provided by the Global Positioning System (GPS) antenna (position, velocity, and acceleration), the on board INS (angular orientation values and rates of change), other external information such as sensor engineering estimates, calibration information, and accurate recoverable ground control points.

As an example, for a system platform monitored at one second intervals, the latitude, longitude, and altitude are recorded in real time from the GPS, which is operating in differential mode on board the aircraft.  When functioning properly, sub-meter standard deviations on the horizontal and vertical components of position of the platform are attainable.  In this document’s subsequent discussion, the assumption is made that the xs, ys, and zs have been translated and rotated from the GPS system of the platform such that they can also be represented in formulation as (XL,YL,ZL); illustrated in Figure 16.

Roll, pitch, and yaw angular values and rates of change may be directly supplied by or interpolated from the INS of the aircraft for every framelet of the image; i.e., for each line.  These data express the orientation of the platform with respect to an inertial ground system in terms of three angles.  Actual sensor behavior between readings must be interpolated on the assumption that the characteristics of the platform’s motion do not change abruptly.  Turbulent atmospheric conditions could easily degrade this assumption and the geometry of the imagery.  Ideally, a reliable and useable flight stabilization platform (FSP) would be aboard the platform to keep the orientation of the sensor as nearly constant as possible (i.e., nadir looking or at an angle to avoid glint) by attempting to dampen changes in the orientation of the platform.  In that case, the non-sequential angles from the FSP are recorded at specific time intervals to be used or interpolated as the roll, pitch, and yaw values for each frame.  Often, the FSP readings cannot be used.

3.5 Whiskbroom Sensor Descriptions
3.5.1. Whiskbroom Sensor Introduction
The whiskbroom sensor depicted in Figure 17, unlike the pushbroom sensor, uses rotating mechanisms to scan a pixel array across its Field-of-View covering a ground swath.  The distortion contributions of platform motion on the pixel array scan can be removed with a process called forward motion compensation (FMC).  The focal plane geometry of the whiskbroom sensor is similar to that of the pushbroom.  The pixel array is usually very short and is rapidly scanned about the direction of platform motion.  The motion of the sensor platform provides the motion needed between image scans similar to the pushbroom sensor.  Such image scans, each of which alone can be considered a narrow panoramic image, are concatenated to form a whiskbroom image.  The remainder of figures, equations, and discussion in Section 3.2 make the following assumptions.  First, the scan pixel array consists of only a single spatial pixel.  Note however, as shown in Figure 17, that for multi-spectral systems a prism splits the incoming light into different spectral bands that record energy in separate detectors that all represent the same small area on the ground.  The second assumption is that the time required to scan a single line is negligible, thereby allowing a single scan line to be treated as an instantaneously imaged framelet as in the case of a single line of a pushbroom image (see Section ‎3.1.1).  The only difference, as addressed in the next subsections, is in the geometry of the scan line.
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Figure 17.  Whiskbroom Scanner

3.5.2. Whiskbroom Sensor Coordinate System
All photogrammetric development in this document is based on the use of the positive image located between the exposure station (or perspective center) and the ground.  The image record reference coordinate system is defined in Figure 18 for the Whiskbroom sensor, such that the positive x-axis is in the direction of the image row (increasing column indices) and the z-axis is along the optical axis which is perpendicular to the lens plane, and pointing away from the collection array.  To establish an unambiguous alignment between the image record and platform reference systems, at rest, the z-axis (zr) will be parallel, but in opposite direction, to the platform Zp–axis at nadir.  

Depending on the sensor physical installation, the sensor coordinate system may be reported directly to the gimbals to which the sensor is attached or relative to the platform’s center of navigation (INS), which in turn may be referenced to the Global Positioning System (GPS) or other datum based coordinate reference system as described in Section ‎2.1.  Since gimbal information is unique to each sensor/platform design, the intermediate rotations and translations required to align these specific components will not be addressed.  However, an example case is treated in Appendix A.
For collectors that are cameras, i.e., film-based, factors that may not pertain to a digital sensor must be accounted for, e.g., distortion factors associated with film deformation.  These film distortions are accounted for in Section ‎3.3.  Although digital sensors may not suffer exactly these same distortion factors, they may have their own unique distortions, such as unevenly spaced elements, which can be treated by the same equations.  The transformation from line/sample to x,y coordinates will accommodate both media, as will also be shown in Section ‎3.3.


[image: image41]
Figure 18.  Whiskbroom Image Record coordinate reference frame

The origin of the sensor coordinate system (xs,ys,zs), designated by SCS, in Figure 18 is the instantaneous perspective center.  Since the sensor actively scans across-track, each pixel and line of pixels is scanned at a different time.  Therefore each pixel in the cross-track line of pixels has its own SCS set of exterior orientation parameters (xs(t), ys(t), zs(t), ωs(t), (s(t), and κs(t)).  Since a strip image is formed from a number of consecutive cross-track framelets, a whiskbroom image consists of a number of consecutive framelets, each with its own highly correlated exterior orientation parameter values.

3.5.3. Whiskbroom Sensor
The whiskbroom sensor creates a panoramic effect resulting from the mechanical scan of the sensor.  As a result, each pixel has a different ground dimension in the x and y direction, with pixels at nadir being square in shape and those at the maximum scan angle demonstrating a trapezoidal shape.  For the whiskbroom sensor model the recorded pixels are assumed to be on a circular arc which when developed will be a straight line.  For the across track pixel coordinates, yi, a constant scan angle increment of successive pixels is assumed.  A nominal determination of a framelet’s nadir point can be made by drawing diagonals across the resulting panoramic ground footprint when a short pixel array is used.  For the development of precise geographic information, scan angle values of less than ± 35° are used to minimize object layover, retain scale in x and y to be approximately equal, and to minimize framelet overlap.

[image: image269.bmp]
[image: image42]
Figure 19.  Whiskbroom Ground Footprint of a Framelet (from a scanned short pixel array, Bow-Tie with diagonals)
The ground sample distance (GSD) for the whiskbroom sensor at nadir is (H • β), where H is the flying height and β is the detector cone angle, also known as the Instantaneous Field of View (IFOV).  As the detector sweeps cross-track, the in-track GSD or (GSDx) is (H secθi) • β and the cross-track GSD or (GSDy) is (H • sec2 θi) • β

With i = 0 to Nx -1 and j = 0 to Ny-1

[image: image43]
Figure 20.  Whiskbroom sensor model
3.5.4. Whiskbroom Common Coordinate System
Given a single scan line or (Nx) in the along-track direction for each framelet leads to the SCS integer transformation for

xi = 0 for i = 0, …, Nx-1 and
Using the maximum scan angle (θmax) and the number of pixels (Ny) in one scan line (framelet) leads to the SCS integer pixel coordinates of:

yi = f tan (θij), for j = 0, …, Ny-1
Eq. 15
with the focal length in pixel units given as:

f = Ny-1/ θmax
Eq. 16
and the actual scan angle given as:
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Eq. 17
3.5.5. Whiskbroom Pixel-to-Image Coordinate Transform
Equations 15 and 16 lay out the integer transformation between pixel coordinates in the whiskbroom image and x, y pixel coordinates in the Sensor Coordinate System (SCS).  This subsection provides equations for the SCS image coordinates considering sub-pixel image measurements.  Furthermore, the single detector element is assumed to be square, i.e. equal dimension in x and y directions.  The CCS measurements are used to determine θs and the location of ys(o), the y-origin for the framelet.


[image: image45]
Figure 21.  Whiskbroom Image Common and Sensor Coordinate Systems

Employing the time equations Eq. 18 through Eq. 21, the whiskbroom pixel-to-image coordinate transformation is:

xs(t) = ( ℓ(t) - int(ℓ(t)+0.5))
Eq. 18
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Eq. 19
ys(t) = (f tan (θs))
Eq. 20
where

ℓ(t)
line (floating point row in pixels) in CCS at scan time (t) (starting with ℓ = 0) and nominally determined by  dividing the measured Common Coordinate System  positive x value (CCSx) from the origin by the pixel x-dimension (dx)
s(t)
sample (floating point column in pixels) in CCS at scan time (t)

sc
sample coordinate of the nominal center of the framelet containing the point of interest
Illustrative examples:
Consider a system with side-to-side sweep of ±30º and Ny = 256 pixels in the sweep direction, then

IFOV = 
[image: image47.wmf]max

q

/ Ny = 1.04720 radians / 256 = 4.09625 e-3 radians
f = 255 / 1.04720 = 244 pixels
Sc = 128

Consider two points:

(a) : (77.5, 128)  and  (b): (78.8, 230.6)

For (a):

xs = 77.5 – int(77.5) – 0.5  = 0.00 pixel
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 = (128 – 128) IFOV = 0.00 radians
ys = f tan
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 = 0.00 pixel

Note that this is the origin of this single line framelet of the image.

For (b):

xs = 78.8 – int(78.85) – 0.5  = 0.30 pixel
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 = (230.6 – 128) (4.09625 x 10-3)   = .42027525 radians = 24.08 degrees
ys = f tan
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 = 244 (.446902) =  109.04 pixel
3.5.6. Whiskbroom Time
For whiskbroom sensors, the formulas for time are as follows:
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Eq. 24
where

t
time corresponding to a framelet containing the point of interest on the image
tc
time corresponding to the central framelet for a given scan

ℓ,s
line and sample coordinates of the point of interest

t0
time corresponding to the framelet containing the reference point 0

ℓ0
line coordinate of the reference point 0

scan0
an integer that represents the image scan containing the reference point 0

scan
an integer that represents the image scan containing the measured image point

dtscan
time interval between two successive scan lines (framelets)
int( )
an operator that converts a real number into an integer

3.6 Whiskbroom Rotation Matrix
The whiskbroom sensor actively scans the ground to acquire the whole image.  The whiskbroom image can be thought of as a series of images taken by a panoramic sensor.  The rotation matrix Mf|p(t) brings the framelet coordinate system parallel to the platform coordinate system.  Without accurate time series data for attitude, the scan direction is assumed to be perpendicular to the flight direction.  The correction 
[image: image56.wmf](

)

t

M

d

 to the rotation matrix compensates for any deviation from this assumption.  The formula for computing Mf|p(t) is:


[image: image57.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

±

-

±

-

-

±

-

±

=

s

c

s

c

s

c

s

c

p

f

t

t

t

t

t

t

t

t

t

w

r

w

r

w

r

w

r

cos

sin

0

sin

cos

0

0

0

1

M

|


Eq. 25
where 
[image: image58.wmf]r

 is the angle between the z-axis of the central framelet for a given scan and the platform Za-axis.  It is positive value when the z-axis of the central framelet is to the left of the platform Za-axis when looking opposite the flight direction. The z-axis of the central framelet coincides with the optical axis while the platform Za-axis is along the vertical.

t
time corresponding to the point of interest

tc
time corresponding to the central framelet for a given scan
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angular speed of scan
The positive sign for the terms in Eq. 25 is valid if the whiskbroom scan direction is counterclockwise in the direction of platform forward motion; otherwise the negative sign is valid.

Since the attitude parameters are referred to the ground coordinate system (X,Y,Z), the full rotation matrix M(t) is computed  from  Mp|g (t)  and the matrix Mf|p(t) as follows:
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Eq. 26
where:

Mf|pt) is the matrix that aligns the platform to the sensor frame

Mr(t) applies a roll angle (outer gimbal) of the sensor with respect to the platform and

Mp(t) applies a pitch angle (inner gimbal) of the sensor with respect to the once-rotated (by roll) platform coordinate system
The M in the collinearity equations is the rotation matrix from ground (g) to frame (f).  So M (t) = M f|platform  Mplatform | ground, where:

Mplatform|ground is the matrix that aligns the ground system with the platform system.  It consists of three sequential rotations to go from the ground to the platform using the sequence of first heading, second pitch, and third roll.
Mf|platform is the matrix defined above, which is a function of the sensor roll and pitch angles.

4. Collinearity Equations
4.4 Simple Derivation
Referring to Figure 12 and Figure 18, these definitions are established: the x-axis as the flight direction, the z-axis normal to the linear array (up) through the perspective center, and the y-axis as necessary to achieve a right-handed Cartesian system.  The relationship between the ground coordinates and corresponding image coordinates is expressed as:
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Eq. 27
From Equation 27, the six exterior orientation parameters, consisting of three coordinates (XL,YL,ZL) of the instantaneous perspective center position, and three independent rotational angles (ω,(n,κ) of M will have different values for each scan line, which constitutes the framelet.  The focal length typically needs to be estimated because only a nominal value is usually available.  The scale factor, k, is different from one image point to another.  Therefore, it is desirable to eliminate the scale factor by dividing xi and yi by –f and rewriting the system of equations as:
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where,
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Eq. 30
The orientation matrix M is the result of three sequence-dependent rotations:
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Eq. 31
The rotation ( is about the X-axis (roll), ( is about the once rotated Y-axis (pitch), and ( is about the twice rotated Z-axis (yaw).  Multiplying out the three matrices in Equation 31, the orientation matrix M becomes:
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Eq. 32
The above equations represent the fundamental mathematical model which relates the image point to the ground position.  It is the basis for ground-to-image and image-to-ground transformation.  The functional form, Fx, Fy, is used in re-linearization when iterative least squares estimation is applied for a variety of photogrammetric problems.

The image coordinates that appear in the collinearity condition (Equations 28 and 29) must have been corrected for all interior orientation systematic errors, so that the condition of the image point, the instantaneous perspective center, and object point being collinear, may be imposed.  The parameters involved in these corrections, see Section ‎5.1, are usually determined through careful sensor calibration prior to the imaging mission.  Alternatively, they can be determined during the use of the equations for geopositioning through what is called self-calibration.  Discussion of this topic is given in Section ‎4.3.

4.5 Accounting for GPS and INS Displacement from the Sensor Location
Since the GPS antenna and the INS system are physically displaced from the perspective center of the imaging sensor, a constant displacement vector dr = (ΔXp ΔYp, ΔZp)T is added to the GPS/INS integrated position to obtain the position of the sensor perspective center in the GPS reference frame.  The components of the translation vector can be determined by using conventional surveying techniques before the flight mission.  See Figure 1 for the physical relationships.

Similarly, a constant mis-orientation matrix dM
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 = f (δω
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, δ(
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, and δκ
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) exists between the INS and the imaging sensor and has to be taken into account to obtain correct orientation parameters of the sensor.  The determination of the sensor attitude and position must be accomplished through the measurement of the vector from the platform center-of-navigation to the sensor origin.  The elements of the dr vector and mis-orientation rotation matrix dM
[image: image71.wmf]INS

are incorporated into the collinearity equations.
A key assumption for in-flight calibration is that no changes in relative position and orientation between the imaging device, INS and GPS antenna will occur.  The measurements of the integrated system have to be interpolated at the exposure times of the imaging sensor.  By adjusting the GPS/INS derived platform position (Xp,Yp, Zp) at a specific time and attitude with the special displacement dr = (ΔX,ΔY,ΔZ) and the mis-orientation matrix between the INS and the imaging sensor, Equation 27 will take the modified form (Škaloud et al., ISPRS Commission III, Working Group 1) shown below:
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Eq. 33
where

xi,yi
coordinates of image point in image coordinate system
X,Y,Z
coordinates of object point in ground coordinate system
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coordinates of instantaneous perspective center in ground coordinate system adjusted for GPS platform offset (i.e., 
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3-by-3 orthogonal rotation matrix from the ground coordinate system to image coordinate system adjusted for INS offset (i.e., 
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 dMINS)
f
calibrated focal length [Usually calculated such that the maximum negative and maximum positive lens distortions are made equal in magnitude, which leads to a better balance]

k
scalar multiple (arbitrary constant)
4.6 Self-Calibration
The concept of self-calibration is provided as a tool to estimate additional parameters that model the systematic errors due to changes in the interior orientation (principal point position and focal length), lens distortions, and CCD line rotations in the focal plane.  Using the same notation adopted for Equations 28 and 29, the collinearity equations are modified for self-calibration, resulting in:
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Eq. 35
where 
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x and 
[image: image87.wmf]D

y contain the well-known additional parameters modeling the principal point offset (xo,yo), the focal length variation (Δf), the symmetric (k1, k2) and decentering (p1, p2) lens distortion coefficients and the scale factor in the y direction (sy ) as described in (Brown, 1971).  These corrections, explained in detail in the CSMWG Information Guidance Document for the Frame Sensor Model, may also include the effect in the x direction due to the CCD line rotation θ in the focal plane as shown in Figure 22.
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Figure 22.  CCD Linear Array Displacement in the Focal Plane
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Eq. 40
The self-calibration equations above are essentially those derived for a frame image, except for linear array rotation.  Whereas one can apply them also for pushbroom and whiskbroom imagery, many of the terms may not be applicable.  For example, for a pushbroom sensor, a framelet is essentially a “line image” in the y-direction.  Consequently, those terms that would be practical to use are: yo, Δf, k1, and k2.  The remaining terms are not practical and may not be possible to recover due to high correlation with the exterior orientation parameters.
Furthermore, in the case of k1, and k2, the radial distance r would essentially be the y coordinate.  The terms accommodating the linear array rotation are pertinent.  Finally, in order to have a robust solution for the self-calibration parameters included in the adjustment, sufficient redundancy is required.

For whiskbroom sensing, except for the recent Isralli development that sweeps a frame array at fixed cross-track angle locations, the image essentially reduces to a “single pixel.”  Consequently, for the single pixel implementation none of the added self-calibration parameters are really pertinent except perhaps for Δf.  However, if the sweep across the vehicle trajectory is implemented with moving mechanical parts or a frame array, it is possible that other distortions will occur.  Either specific modeling of the dynamics of these motions is done, or some of the terms of the self-calibration will compensate for these distortions.

There are variations on the single linear array pushbroom discussed above.  One system employs three linear arrays rigidly mounted in the focal plane of a single lens, called Three Line Scanner, or TLS.  Scanning is performed by sweeping forward due to the forward motion of the aircraft.  This allows for triple coverage of the terrain.  Another variation is having the three linear arrays, but with three different lenses.  The modeling of these systems, including self-calibration would require modification of that given in the preceding clauses of this report.  The particulars are given in the References, notably those by D. Poli.

5. Platform Modeling
5.4 General
The location of an image point in the Common Coordinate System (CCS) are transformed to three-dimensional image coordinates in the Sensor Coordinate System (SCS) by using transformation equations developed in Sections ‎3.1.3 and ‎3.2.5.  These transformation equations are based on the assumption that the individual pixel units are not affected by detector array or lens aberrations.  However, if a larger area detector array is used, distortions and aberrations as described in the CSMWG Information Guidance Document for a Frame Sensor Model must be incorporated into the Pushbroom or whiskbroom image point processing.  The following is a list of the items that must be considered with corrections applied to the x and y image coordinates:

Array and Film distortions  

Principal point offset

Optical lens distortions such as radial, pincushion or barrel effects and 

Decentering
Therefore, given pixel coordinates 
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, calculating the image coordinates, including correction factors considered, may be accomplished through the use of Equations 7, 8, and 9 for atmospheric correction; 34 and 35 for self-calibration parameters; and either 12 and 13 for Pushbroom sensors or 18 and 20 for Whiskbroom sensors.  Therefore, (x’,y’) are the coordinates required to establish the image-to-object transformation.

To relate image coordinates in SCS to the ground coordinate system, six exterior orientation parameters are required for each line, the framelet.

Each observation of position of an image point contributes two condition equations, the collinearity equations.  To determine six unknown exterior orientation parameters for each scan line, at least three point measurements of ground control observations are required for each scan line.

Other a priori information describing the platform behavior from the on-board GPS or INS or FSP can be used to avoid a bulky and impractical bundle adjustment with only collinearity equations.  Since the time interval between two adjacent lines is usually short (a few hundredths of a second), the scan integration time very short (one-to-two milliseconds (msec)), each of the six exterior parameters may change slowly and somewhat predictably as the image line number increases.  Also, each exterior orientation parameter in a given scan line will be highly correlated to that in a neighboring scan line.

5.5 Methods for solution
Given the platform and sensor discussions, deterministic models and stochastic models could be used to solve for the exterior orientation which ensures accurate and precise geopositioning.

- Deterministic Models.  The deterministic models assume minimal or no random variation and therefore give a fixed and precisely reproducible result.  Deterministic models suppose that statistical variations in the average behavior of the system’s elements are relatively unimportant.

- Stochastic Models.  The stochastic models are used where there is reason to expect random events to have an important influence on the behavior of the system or when there is need to take account of events occurring at random times.

The essential difference between a stochastic and deterministic model is that in a stochastic model different outcomes can result from the same initial conditions.

In this document the Spline model is described to represent the deterministic model methodology.  It is widely used to model trajectories in time-dependent systems.  Two stochastic models, Gauss-Markov and Gauss-Helmert, are also explained.

5.6 Spline Model for the System
The General Spline Model approach involves the recovery of spline coefficients, with time as the independent variable, for the equations reflecting the behavior of each of the six elements of exterior orientation.  To reduce the processing burden of a strip image solving for each framelet’s exterior orientation, the strip image is sectioned into smaller planar segments, each consisting of some number of collection lines.  A different set of coefficients may then be recovered for each planar segment of an image that has been subdivided for the piecewise processing (see Figure 23).  Constraints on the parameters, such as continuity imposed at the section boundaries (co-planarity) allow reassembly of the strip image.

The time interval between exposures of adjacent lines of imagery is handled as a constant.  This can be ascertained by time tags in the data file.  The six time-dependent elements of exterior orientation are written as a function of line number.  The sensor exterior orientation is modeled with piecewise polynomial functions.  For the position of the exposure station, the interpolated sensor position from the GPS data, preferably already translated from the platform GPS to the sensor coordinate origin, is used as a nominal value.  Any discrepancy between this interpolated sensor position and its estimated value is expressed by a polynomial.  For sensor orientation angles, zero values are initially used as nominal angles, with the exception of the heading angle.  Although this document previously described the derivation of values for the sequential angles, ω, φ, and κ, only κ or the navigation system’s angle H is typically used at the outset.  This implementation is based on the fact that the angle information from INS/FSP is not uniformly reliable for many systems.  Often only nominal angles for the heading are approximated by computing the direction of the flight from the GPS data.


[image: image95]
Figure 23.  Image “segments” for spline modeling

The general form of the spline equation is shown for the X element of the exterior orientation parameters
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Eq. 41
where XL is the unknown sensor position, XGPS is the GPS estimate of the sensor (taking care of the antenna offset, if necessary), XΔ is the unknown correction of the GPS position given the time at which line (
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) in the image segment was collected, and i is the sensor segment number in the strip.  The following are second-order examples of the general form for each parameter.
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Eq. 47
where

XGPS, YGPS, ZGPS
interpolated sensor position from the GPS data,

ℓ
image line number of the image segment,
i
image section number (i = 0, …, ns -1) (see Figure 23)
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are the polynomial coefficients
ns
number of sections in the spline representations of the trajectory parameters.

The selection of polynomial order (i.e., linear, quadratic, or higher) depends on the behavior of the particular parameter as a function of time or of line number, and also on the length of the splined sections.  When GPS data is available to provide close approximations, a first order polynomial is often used, instead of a second order, to describe the aircraft/sensor position.  Additional pseudo-observations can fix some or all 2nd order parameters and reduce the polynomial degree to 1st order (linear) functions.  Conversely, if accurate differential GPS data and INS data are not available, higher polynomial order such as cubic would be used.

The total number of parameters in a general second order spline model with ns sections is (18(ns + 1), including updating the focal length.  These parameters are as follows:
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 for i = (0, ns-1) and f
If the position can be modeled with a first order polynomial, then the number of parameters per segment is reduced to 15.  The total number of parameters for the strip image would then be (15 times ns + 1), since XLi2, YLi2, and ZLi2 are no longer needed.

There are three kinds of constraints that may be applied to each parameter at the section boundaries.  The zero order continuity constraints ensure that the value of the function computed from the polynomial in each of two neighboring sections is equal at their boundary.  Equations 48 through 53 show equations for the boundary between the first and second sections.
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Eq. 53
where ℓbd = image line number at the boundary.

The first order planar continuity constraint requires that the slope, or first derivative with respect to the boundary line, of the functions in two adjacent sections is forced to have the same value at their boundary.  Equations 54 through 59 provide an example at the boundary between the first and second sections.
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Eq. 59
The second order planar continuity constraint requires that the local maxima / minima, or second derivative with respect to the boundary line, of the functions in two adjacent sections is forced to have the same value and direction at their boundary.  Equations 60 through 65 provide an example at the boundary between the first and second sections.
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Eq. 65
Generally, the polynomial order and the number of sections can not be determined before considering the data set, including the number and distribution of accurate ground control points.  Experiments for the various cases are necessary for making these decisions.

5.7 Gauss-Markov and Gauss-Helmert Models as Stochastic Models
5.7.1. Stochastic Model Introduction
The Spline Model although acceptable for modeling the general planar trend of a trajectory, is unable to compensate sufficiently for most aircraft reaction to air turbulence and is too restrictive in control point distribution to accurately position airborne pushbroom imagery.  The Gauss-Markov model, based on the Gauss-Markov process, can accommodate abrupt changes in the position and orientation of the sensor.  If the self-calibrating terms described in Section ‎4.3 are to be included in the mathematical modeling, the Gauss-Helmert model is a recommended approach, given the non-linearity introduced by two sets of unknowns such that each condition equation includes more than one observation.  In implementation, the linearization of the collinearity equations in either model is accomplished using the linear terms of the Taylor series expansion.  Both approaches are included here.
5.7.2. The Gauss-Markov (GM) Model
In the Gauss-Markov approach, six parameters per line are carried to model the instantaneous exterior orientation for each pushbroom line.  Parameters for each image line are tied, or constrained, stochastically to be co-planar to those of the previous image line.  This model allows greater flexibility than the preceding spline model, allowing linear feature constraints to contribute to parameter recovery, thereby improving positioning and rectification accuracy.  The equations for a continuous Markov process, followed by its associated discrete form, are presented briefly.  Then, a set of constraint equations between parameters is developed for implementation in a least-squares bundle adjustment program.
The criterion for a first-order Markov sequence is that the conditional probability distribution of a random variable be dependent only on the one most recent point in the sequence; for a second-order the dependency is on the two most recent points.  A Markov process, the continuous case of the Markov sequence, is a solution of a first-order stochastic differential equation (Papoulis, 1965; Gelb, 1974): i.e.,
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Eq. 66
where βi(t) is a function of time, x is the unknown parameter, and w represents white noise.

If the restriction that the probability density functions of w and, consequently, also of x are Gaussian is accepted, then the process x(t) is a first order Gauss-Markov process. By assuming that the process x(t) is stationary, βi(t) can be expressed as a constant β1 and the discrete form of Equation 66 may be written as:
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Eq. 67
Solving for xi yields:
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Eq. 68
Another representation is:
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Eq. 69
where ni for Δt
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 has mean 0 and variance σn2, Δt is a constant, and
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 is a constant for Δt β1
In this case, assuming that the interior orientation of the sensor is known, 6L parameters are carried in the least-squares adjustment, where L is the total number of lines in the image.  Following the general representation above, for each line in the image starting with the second line, the following six equations are written:
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where

i = line number in the image, n1,i through n6,i are considered fictitious observations assigned an a priori value of zero, and s for each exterior orientation element has a constant value for the entire time (by assuming stationarity).
These equations are the linear Taylor expansion replacing the exponential representation of the Gauss-Markov:
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Eq. 76
where

ℓi

line number in the total image (ℓ = 2,3,…,L)

s
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coefficient of each exterior orientation element

ΔP
correction of each exterior orientation element.

The least squares GM process, also called the ‘adjustment by indirect observations’, solves for the corrections to the exterior orientation parameters:
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Eq. 77

This is often referred to as the system of normal equations, where:

N = BTΣ-1 B
B = matrix of partial derivatives of the equations: 1 – F(X) =0 and f = F(X0) - 1

Σ is the weight matrix, 

where w = ℓ– f(x0)  and

ℓ is the set of observations
Although the six equations per line are treated as observation equations in the least-squares adjustment algorithm, they are weighted constraint equations, effectively reducing the number of unknown parameters from 6L to 6.  Therefore, a unique solution may be obtained if three control points are available (Ethridge, 1977; McGlone and Mikhail, 1981).

For each line of imagery in which a point is observed, two collinearity condition equations are written just as in the case for the Spline piecewise polynomial model.  As the number of observed points corresponding to control points or linear features increases, the redundant measurements can contribute significantly to the recovery of exterior orientation elements in the vicinity of the observation.

This redundancy effect occurs if the weights assigned to the constraint equations are low enough to allow the parameters to vary significantly from one line to the next.  Such an apparent advantage, however, is tempered if widely varying weights are used because it makes the statistical “degrees of freedom” concept ambiguous.

5.7.3. The Gauss-Helmert Model
If additional parameters, such as principal point offset, are also to be addressed by the model, the Gauss – Helmert method is recommended.  Section ‎4.3 on “self-calibration” provides more detail about those parameters.  This Section describes the modeling technique.

The Gauss-Helmert model was introduced by Helmert in 1872 as the general case of least squares adjustment. It is also called the mixed model [Koch].  The Gauss-Helmert model is a linearized stochastic model as was Gauss-Markov.  The model’s generic nonlinear expression is:
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where 
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 represents the observations and 
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 the parameters; l0, x0 are approximations, and Δl , Δx are corrections.

The linearized form is:
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Where: A = 
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The least squares coplanarity GH process solves for the corrections to the exterior orientation parameters:
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Eq. 80
in which Σ is the weight matrix of the observations.

Any constraint equations are functionally given by:
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where
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The expression of the linearized form, using the 
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 implies that an initial estimate of the sensor parameters must be known before this method can be applied.
6. Application of Sensor Model

6.4 Adjustable Parameters
Although in many ways analogous to the standard frame sensor, the pushbroom model, as an aggregation of many framelets, adds parametric complexity due to its time-sequencing collection while both sensor and platform are moving. The pushbroom sensor is highly dependent upon real-time determination of position and attitude data for each scan.  Since the pushbroom sensor can be compared to a very narrow field of view frame sensor, classic rigorous collinearity photogrammetric models can be developed.

This Section summarizes the various parametric elements described in the preceding Section’s presentation of the mathematical equations.

The Pushbroom sensor model is represented by the pairs of equations 28 and 29.  Since each scan requires a minimum of three Ground Control Points, the classic models would be over parameterized and alternate approaches are applied to develop an accurate model of the sensor.  The Spline Model, improved with the Gauss-Markov process, was developed to accurately model the airborne pushbroom sensor.  In addition to the typical six Exterior Orientation parameters, other elements are needed to model the sensor: rate-of-change for each parameter; platform velocity, sensor angular field-of-view (FOV); instantaneous-field-of-view (IFOV) derived from platform velocity, average height above terrain; time at each sensor scan, duration of sensor scan.  If the self-calibration capability is implemented to provide interior orientation data of the sensor, then the angular parameter that describes CCD line focal plane rotation with respect to the x (flight direction) is required.  The self-calibration capability provides an estimate for Δx and Δy that contain the well-known additional parameters modeling the principal point offset (xo, yo), the focal length variation (Δf), the symmetric (k1, k2) and decentering (p1, p2) lens distortion and the scale factor in the y direction (s
[image: image165.wmf]y

).
6.5 Covariance Matrices
The development of an accuracy estimate for location data derived from a pushbroom sensor is dependent upon statistical estimates of the validity of each parameter employed in the model.  In addition, since the general pushbroom model developed here is a monoscopic model, the reliability of coordinate derivation is directly correlated to the accuracy of a Terrain Model.  A Jacobian is developed for the sensor which enables the determination of location accuracy as well as providing a method to determine the sensitivity of the model to each of the parameters.
In all the metric applications of imagery, the quality of the extracted information is considered as important as the information itself.  This is particularly true for geopositioning applications which require high levels of accuracy and precision.  The location of an object in the three-dimensional ground space is given either by its geodetic coordinates of longitude ((), latitude ((), and height (above the ellipsoid, h), or by a set of Cartesian coordinates (X,Y,Z).  Although there are many ways to express the quality of the coordinates, the most fundamental is through the use of a covariance matrix.  For example:
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Eq. 83
in which (X2, (Y2, (Z2 are the marginal variances of the coordinates, and (XY, (XZ, (YZ are covariances between the coordinates, which reflect the correlation between them.  The practice is often to reduce these six different numbers to only two:  one expressing the quality of the horizontal position and the other the quality in the vertical position.  The first is called circular error, or CE, and the second linear error, or LE.  Both of these can be calculated at different probability levels, CE50 for 0.5 probability, CE90 for 0.9 probability, etc.  Commonly used measures, particularly by NGA under “mapping standards,” are CE90 and LE90.  The CE90 value is derived from the 2-by-2 submatrix of ( that relates to X,Y, or
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Eq. 84
The LE90 is calculated from (Z2.  In these calculations, the correlation between the horizontal (X,Y) and vertical (Z) positions, as represented by (XZ, (YZ, are ignored (i.e., assumed to be zero).  The X,Y,Z system in these equations usually refers to the local coordinate system where Z represents elevation.

An alternative to the covariance matrix in Equation 83 is the correlation matrix:
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Eq. 85
where the σ’s are standard deviations, and the  r’s are the correlation coefficients with a defined range of  ( -1≤ r ≥ +1).  The covariance matrix in Equation 83 can be constructed from Equation 85 by squaring the σ values and calculating the covariances from, for example, σxy = rxy σx σy, etc.

In order to have a realistic and reliable value for the estimated covariance matrix, (, of the geoposition, all the quantities that enter into calculating the coordinates X,Y,Z must have realistic and dependable variances and covariances.  These latter values present the image sensor modelers and exploiters with the most challenge.  Sensor designers frequently do not provide any reasonable estimates of the expected errors associated with their sensor parameters.  For well-calibrated sensors, it is usually reasonable to have the values of the needed sensor parameters as well as their quality.  Note however, as stated earlier, for most practical situations, the principal point offsets and distortion parameters have such small magnitudes with regard to the other terms, it is not usual to provide covariances of these terms.

By contrast, the quality of the six exterior orientation parameters is not usually reliably known.  If such parameters are carried as adjustable parameters, then it is not critical to have good prior error estimates.  These prior values can be approximate since, through the adjustment process, they would be refined through rigorous error propagation associated with least squares adjustment.  These updated parameter covariances are, in turn, used in a rigorous propagation to produce the final covariance matrix, (, associated with each object.  In the metadata tables these covariance matrices will be explicitly listed as required.

The most difficulty is encountered when no adjustability is allowed and the information is based solely on the mission support data.  In this case, if the input values for the quality of the parameters are either grossly in error, or non-existent, the propagated geolocation covariance matrix, (, can be considerably in error.
7
Pushbroom and Whiskbroom Metadata Requirements

Geopositioning from sensor imagery requires pertinent metadata. Such metadata include two broad sets of parameters: interior and exterior.

The interior parameters are those which are specific to the sensor design and calibration such as focal length (f), location of the principal point (x0 and y0), and various other calibration data which allow for corrections for systematic errors within the sensor. Additionally, covariance information associated with these parameters is used in computing geoposition uncertainties and should also be provided.

The exterior parameters describe the location and orientation of the sensor with respect to the object reference coordinate system. As is clear from the details presented in the text of this formulation paper, there are many coordinate systems and sequences of rotation angles that may be involved in the various components of the collecting system. In the interest of establishing a standard, it is recommended that the location of the sensor (or more precisely, its effective perspective center, L) will be with respect to the Geocentric (or ECEF) reference coordinate system. The orientation of the image-frame will be provided in the form of the nine elements (mij) of the orthogonal matrix, M, that rotates the geocentric reference coordinate system to be parallel to the image-frame coordinate system. The elements of this matrix are functions of only three independent parameters; the most common photogrammetric standards are the three sequential rotations: , , and . The values of these angles can be readily calculated from the numerical values of the elements of M.

The quality of the six exterior orientation elements (location coordinates and orientation angles) is expressed by a 6×6 covariance matrix. (Or equivalently by a 6×6 correlation matrix with standard deviations along the main diagonal and correlation coefficients off the main diagonal.) The covariance matrix will, in general, be a full matrix, because it is usually calculated from several constituent covariance matrices associated with different transformations through rigorous error (or covariance) propagation.

To summarize: the required standard exterior metadata for geopositioning with a frame sensor are the coordinates (XL, YL, and ZL) of the effective perspective center in the geocentric coordinate system, the nine elements of the matrix M that rotates the geocentric system parallel to the image-frame coordinate system, and the 6×6 covariance matrix expressing the quality of (or uncertainties associated with) the exterior orientation elements. (Since this matrix is symmetric, it contains only 21 unique values—6 variances on the main diagonal and 15 off-diagonal covariances.)

Appendix A shows how the standard exterior metadata elements might be determined and how the corresponding 6×6 covariance matrix would be developed for an example case involving five different coordinate systems (geocentric, NED, platform, sensor, and frame). Other cases can similarly be addressed by the developer.

Table 1 provides the metadata for a calibrated sensor in order to derive precise geopositions.  Table 2 lists the metadata for the platform, which may be required to derive some of the information appearing in Table 1.

Table 1.  Sensor Parameter model
Metadata Parameter, Definition, Obligation, and Comments / Explanation

(Obligation: M - Mandatory, C - Conditional, O – Optional, TBR – To be resolved)
	ID
	Parameter
	Definition
	Ob.
	Description

	1
	Sensor Type
	Classification indicative of the characteristics of the collection device.
	M
	This field is listed as mandatory as it is anticipated to become part of a recommended metadata “core” elements list.

	2
	Number of Columns in Image 
	The number of columns (C) in the image; equals the number of pixel elements in the sensor array (Ny).
	C
	Mandatory if ARRAY_WIDTH and COL_SPACING are not provided.  Can be derived from sensor array width, y-direction, divided by column spacing (dy)

	3
	Sensor Array Width
	Aggregate dimension of the sensor array in the y-direction
	C
	Mandatory if N_COL is not provided

	4
	Column Spacing dy
	Column spacing measured at the center of the image; distance in the image plane between adjacent pixels within a row usually in linear units, such as millimeter.
	C
	Mandatory if N_COLS is not provided.  NITF definition, STDI-0002, ACFTB, “COL_SPACING”, includes angular and linear measurement methods.

	5
	Detector Element Rotation
	Angular rotation of sensor’s detector elements within the array
	O
	First quadrant angular rotation measured from the in-track direction to the cross-track direction of the sensor element used by manufacturers to improve resolution

	6
	Number of Rows in Image
	The number of rows in the image. (unitless)
	C
	For the Pushbroom and Whiskbroom sensor, this value is the aggregate of the number of minor scans in the strip.  Mandatory if COLLECTION_START_TIME, COLLECTION_STOP_TIME, PUSH_SCAN_TIME, or WHISK_SCAN_TIME are not available.  Conditional because it can be derived from sensor total time of image acquisition divided by average scan time.

	7
	Row Spacing
	Row spacing measured at the center of the image; distance in the image plane between corresponding pixels of adjacent rows usually in linear units. (mm)
	M
	

	8
	Collection Start Time
	The date and time at the start of sensor first image line activation.
	M
	

	9
	Sensor Collection Time  (POSIX TIME)
	Time in micro-seconds for each pushbroom image line or whiskbroom framelet of the dataset collection based on using the Portable Operating System Interface (POSIX) where time is in integer microseconds since 1 Jan 1970  and adding required leap seconds to state UTC time. record coordinate system
	M
	Applies an IEEE standard which provides required greater significant number precision than NITF.  Algorithms exist to incorporate required leap seconds to convert to UTC.

Incorporates the IEEE 1003.1 Corrigendum, and Profiles PSE52 and PSE54 of IEEE 1003.13-2003, "IEEE Standard for Information Technology-Standardization Application Environment Profile-POSIX Realtime and Embedded Application Support (AEP).

	10
	Collection Stop Time
	The date and time at the end of sensor last line activation
	M
	

	11
	XL – Sensor Perspective Center Position at Sensor Collection Time (t)
	X, location of the sensor in a world coordinate system at time of exposure
	M
	Primary exterior orientation position parameter required for sensor location.

	12
	YL- Sensor Perspective Center Position at Sensor Collection Time (t)
	Y location of the sensor in a world coordinate system at time of exposure
	M
	Primary exterior orientation position parameter required for sensor location.

	13
	ZL – Sensor Perspective Center Position at Sensor Collection Time (t)
	Z location of the sensor in a world coordinate system at time of exposure
	M
	Primary exterior orientation position parameter required for sensor location.

	14
	Nine elements, mij, of the matrix M


	M is the orthogonal matrix which rotates the geocentric coordinate system to be parallel to the image record coordinate system
	M
	Defined in Equation 32 with alternative methods for creation developed as Quaternions in item  and  in Appendix A

	15
	VXL
	Sensor velocity in the XL direction at Kalman filtering time stamp.
	C
	NED velocity vectors as out put from the Kalman filtering process translated to the sensor for each Kalman process output time stamp.  Conditional if the platform velocity must be used with the IMU to Sensor Lever Arm.

	16
	VYL
	Sensor velocity in the YL direction at Kalman filtering time stamp.
	C
	See VXL

	17
	VZL
	Sensor velocity in the ZL direction at Kalman filtering time stamp.onto the collection array. (mm).
	C
	See VXL

	18
	Sensor Focal Length
	f, lens focal length.  Effective distance from optical lens to sensor element(s).  A community accepted value of 999.99 indicates focal length is not available or not applicable to this sensor.
	M
	Single value for each zoom level of the lens assembly in the data set.  For pushbroom/whiskbroom sensors it normally is assumed to be uncalibrated.

	19
	Sensor Focal Length Flag
	Flag Value that defines if the provided focal length is a calibrated focal length, f, (mm); corrected effective distance from optical lens to sensor array.
	M
	Y(es) / N(o) or 1 /0 value that indicates Calibrated or Not-Calibrated focal length value is provided

	20
	Calibration Date
	Date sensor was last calibrated. CCYY is the year,

MM is the month (01–12), and DD is the day of the month (01 to 31).
	C
	Conditional on value of item 17.  If Item 17 is Yes or 1 then this item is Mandatory.

	21
	Sensor Focal Length Adjustment
	Refinement (Δf) resulting from self-calibration operation in millimeters
	C
	Nominally a single value for a data set collection, however refinement may be defined for each segment of the total image collection.  Conditional on the implementation of a self-calibration operation in the software.

	22
	Sensor Focal Length Variance
	Variance (sigma^2)  for focal length, mm2
	M
	Nominally a single value for each zoom level of the lens assembly in the data set collection. Initially an approximation based on sensor component quality that is refined in the self-calibration / geopositioning operation.  

	23
	Principal point off-set, x-axis
	x0, x-coordinate within the sensor array coordinate system of the foot of the perpendicular dropped from sensor perspective center onto the collection array. (mm).
	C
	As a coordinate, this term includes magnitude and sign (i.e., positive/negative x).  Conditional when this is replaced with calibrated, or derived data.  Nominally a single value for a data set collection. Initially an approximation  based on sensor component quality that is refined in the self-calibration / geopositioning operation

	24
	Principal point off-set, y-axis
	y0, y-coordinate within the sensor array coordinate system of the foot of the perpendicular dropped from sensor perspective center onto the collection array. (mm).
	C
	As a coordinate, this term includes magnitude and direction (i.e., positive/negative y).  Conditional when this is replaced with calibrated, or derived data.

	25
	Principal Point offset covariance data
	Covariance data of principal point offsets.
	O
	In practice, of such small magnitude so as can be ignored.

	26
	Image Record Coordinate Reference Definition
	Origin at sensor perspective center at a distance f (focal length) from the image plane; positive z-axis aligned with optical axis and pointing away from sensor and the xr and yr axes will be parallel to and in the same directions as the platform center of navigation axes at nadir.
	M
	Defines the alignment of the coordinate systems of Figure 12 and Figure 18

	27
	Sensor position and attitude accuracy variance data
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Variance (sigma^2) data for position (XL,YL,ZL), and attitude (roll, pitch, yaw).

	M
	Usually estimated on the basis of original data or from photogrammetric processing such as triangulation.  Conditional if standard deviations are provided instead Conditional if standard deviations are provided instead.

	28
	Sensor position and attitude accuracy covariancy data
	σ XL YL, σ XL ZL, σ YL ZL, σ XL ω,    σ XL φ, σ XL κ, σYL ω, σ YL φ, σ YL κ, σ ZL ω, σ ZL φ, σ ZL κ, σ ω φ,     σ ω κ, σ φ κ


	M
	

	29
	Lens radial distortion coefficients
	k1 (mm^-2), k2 (mm^-4), k3 (mm^-6), radial lens distortion coefficients
	O
	Used when large frame array is the sensor.  Then it becomes Conditional when replaced with calibration, or derived data.

	30
	Lens radial distortion (k1,k2,k3) covariance data
	Covariance data of radial lens distortion coefficients.
	O
	In practice, of such small magnitude, so as can be ignored.

	31
	Decentering lens correction coefficients
	p1(mm-1), p2(mm-1)
	O
	Used when large frame array is the sensor.  Then it becomes Conditional when replaced with calibration, or derived data

	32
	Decentering lens correction (p1,p2) covariance data
	Covariance data of decentering lens distortion coefficients.
	O
	In practice, of such small magnitude, so as can be ignored 

	33
	Atmospheric correction (Δd) by data layer
	Correction to account for bending of the image ray path as a result of atmospheric effects
	C
	Adjustment to compensate for the bending in the image ray path from object to image due to atmospheric effects. Multiple data layers can be defined so the parameter has an index of I= 1, …n

	34
	Atmospheric correction data layer top height
	Upper boundary altitude value for data layer I
	C
	Sets the upper bound for the specific atmospheric correction value for data layer I

	35
	Atmospheric correction data layer bottom height
	Lower boundary altitude value for data layer I
	C
	Sets the lower bound for the specific atmospheric corrections value for data layer I

	36
	Atmospheric correction algorithm name
	Name of algorithm used to compute data layer I correction
	C
	Defines the specific algorithm used in the computation

	37
	Atmospheric Correction algorithm version
	Version label for the algorithm used to compute data layer I correction
	C
	Defines the specific version of the algorithm use in the computation

	38
	Swath Field of View (FOV)
	Nominal object total field of view of the sensor using the complete range of angles from which the incident radiation can be collected by the detector array
	M
	Defines the specific version of the algorithm used in the computation 

	39
	Instantaneous Field of View
	The object field of view of  the detector array in the focal plane at time (t)  (degrees)
	M
	Value in in-track and cross-track varies with scan pixel position on whiskbroom sensor

	40
	Maximum Scan Angle
	Maximum range of angles measured in radians that the sensor optics can collect incident radiation.
	M
	Used to determine effective focal length at column pixel location

	41
	Scan Angle at scan line time (t)
	Actual scan angle value at sensor time t for pixel array (milli-radians)
	M
	

	42
	Time (t)
	UTC Time reference is used for all parameters that identify a time component  computed from Sensor Collection Time  (POSIX TIME)
	M
	Value used to interpolate platform and sensor location and attitude.  Value also used to determine whiskbroom scan angle

	43
	Pushbroom scan duration (dt)
	Time to perform the collection, storage, and clearing of the detector array for  one image line of  the pushbroom sensor
	M
	

	44
	Whiskbroom scan duration (dtscan)
	Time to perform one complete scan line of the whiskbroom sensor framelet
	M
	

	45
	Whiskbroom pixel scan duration (dtsample)
	Time to perform acquisition of one pixel or framelet of the whiskbroom sensor
	M
	


Table 2. Collection platform parameters
 (Requirement: M - Mandatory, C - Conditional, O – Optional, TBR – To be resolved)
	ID
	Parameter
	Definition
	Rqt*
	Description

	46
	Ephemeris Flag
	Flag used to indicate the source of (orbit/ Flight) determination) ephemeris data used for this data set
	M
	All sensors are expected to employ GPS.  There should be no difference in ephemeris data whether it is from an airborne or satellite platform.  The GPS data is derived as ECEF X, Y, and Z. Requirement should be for COLLECT-TIME = actual real time or REFINED = refined real time ephemeris, not PREDICTED.

Since the platform is obtaining its positional information at a different time sequence than the sensor is acquiring data, the platform positional information needs to be interpolated to the sensor image time.  This is often accomplished with Kalman filtering or quaternions.  Normally a set of seven observations that bracket the sensor data acquisition time is used.

	47

	Platform Time

P(t)
	Time when platform location data is acquired.
	C
	Provides data to correlate platform location to sensor acquisition.  Mandatory if location not simultaneously collected with image data, to provide necessary location of the sensor/platform/Earth reference coordinate system to allow correct interpolation at image acquisition time.

	48
	Platform  geolocation at scan line time P(t)
	The position of the platform given as X, Y, and Z Ephemeris Vectors in ECEF coordinates (meters).at framelet acquisition time.
	C
	Not required for image-to-ground calculations if sensor location data available directly.  Center of navigation defined with respect to the local NED coordinate frame using offsets, and then related to an ECEF reference.  

	49
	Platform Attitude Determination Time at scan line time P(t)
	Time when platform attitude (INS) data is acquired.
	C
	Provides data to correlate platform attitude to sensor attitude at image acquisition through INS processing.  Mandatory if attitude not simultaneously collected with image data, to provide necessary attitude of the sensor/platform/ to allow correct interpolation at image acquisition time.

	50
	Platform true heading at scan line time P(t)
	Platform heading relative to true north. (positive from north to east) degrees
	C
	Conditional if sensor position and rotation data not available directly when given within an absolute reference frame or not simultaneously collected with framelet scan line time data.  Alternatively, true heading not required if platform yaw is given.

	51
	Platform pitch at scan line time P(t)
	Rotation about platform local y-axis (Yp), positive nose-up; 0.0 = platform z-axis (Zp) aligned to Nadir, limited to values between +/-90 degrees. (degrees)
	C
	Conditional if sensor position and rotation data not available directly when given within an absolute reference frame or not simultaneously collected with framelet scan line time data.

	52
	Platform roll at scan line time P(t)
	Rotation about platform local x-axis (Xp).  Positive port wing up. (degrees)
	C
	Conditional if sensor position and rotation data not available directly when given within an absolute reference frame.  or not simultaneously collected with framelet scan line time data.  

	53
	Platform yaw at scan line time P(t)
	Rotation about twice rotated platform local z-axis (Zp).  Angle of heading from track over ground. Rotation about twice rotated z-axis in the xy plane. Positive angle measured clockwise from heading (x-axis) to track.
	M
	Conditional if sensor position and rotation data not available directly when given within an absolute reference frame or not simultaneously collected with framelet scan line time data.  Alternatively, true heading not required if platform pitch, roll, and yaw are given.

	54
	Platform true airspeed
	Platform true airspeed at framelet acquisition time (t)
	C
	Conditional if Platform ground speed provided..   Platform true airspeed or Platform ground speed elements, or both, must be reported.  INS North/East/Down velocity components may be the source for this airspeed

	55
	Platform ground speed
	Platform velocity over the ground at framelet acquisition time (t)
	C
	Conditional if Platform true airspeed provided.  Platform true airspeed or Platform ground speed elements, or both, must be reported.  

	56
	GPS Lever arm offset
	Vectors from GPS to INS described in either x, y, z components or by magnitude and two rotations and velocity.
	C
	Conditional on sensor geolocation at image exposure time being provided.   If sensor geolocation is provided based on INS processing, this lever arm is mandatory to establish platform GPS to INS geolocation and velocity.

	57
	INS Lever arm offset
	Vectors from INS to Sensor described in either x, y, z components or by magnitude and two rotations, velocity, and platform attitude 
	C
	Conditional on sensor location and attitude at image exposure time being provided directly.  If sensor geolocation and attitude is provided based on INS processing, this level arm is mandatory to establish sensor’s six elements of location and orientation.

	58
	X-Component of the Sensor Offset Vector
	The X-axis component, measured in the platform coordinate system, from the origin of the platform coordinate system to the origin of the sensor coordinate system, i.e. the perspective center L.

X component of the offset vector rimu_sen
	C
	Offset vector describes the position of the sensor perspective center relative to the platform in the platform coordinate system.  Conditional for the case where a sensor does not provide position information directly referenced to, say, an ECEF system.

Mandatory if sensor provides this information directly referenced to an earth datum.

	59
	Y-Component of the Sensor Offset Vector
	The Y-axis component, measured in the platform coordinate system, from the origin of the platform coordinate system to the origin of the sensor coordinate system, i.e. the perspective center L.
Y component of the offset vector rimu_sen
	C
	See X-Component of the Sensor Offset Vector



	60
	Z-Component of the Sensor Offset Vector 
	The Z-axis component, measured in the platform coordinate system, from the origin of the platform coordinate system to the origin of the sensor coordinate system, i.e. the perspective center L.
Z component of the offset vector rimu_sen
	C
	See X-Component of the Sensor Offset Vector

	61
	Roll: Sensor Rotation about the translated platform
Xp -axis
	The rotation of the sensor in the yz-plane of the sensor reference frame; measured as positive when positive y-axis rotates directly towards the positive z-axis.


	M
	Reference Figure 1.  If the sensor is fixed in position and its axes are perfectly aligned with the platform axes, then platform attitude is sensor attitude.  The INS to Sensor Vector identifies angular adjustments to platform attitude, which then defines a static platform to sensor attitude regardless of platform attitude, and effectively translates platform attitude to the sensor coordinate system origin. Thus sensor xs is aligned at with the platform Xp  axis and the sensor ys zs plane is aligned with the platform Yp Zp plane.  In flight processing of the platform attitude data is then translated to the sensor coordinate origin and any local sensor rotations are applied to these platform attitude values to define sensor attitude at time of exposure.

Sensor roll is angular position of the sensor optical axis, measured about the platform roll axis (Xp). Measured positive from the positive pitch axis vector (+Yp) toward the positive yaw axis vector (+Zp) (clockwise looking in the +Xp direction).
Reference may be made to gimbal mounting or to platform reference system; but must be specified.  If the sensor is gimbal mounted and can be directed by rotations to an alternate viewing position, then the local gimbal rotations shall be applied to provide sensor attitude at time of exposure.  If the rotation angles are gimbal mounting angles, the photogrammetric development transforms them into the required sequential Euler angles.
An alternative method to determining sensor orientation angles, as described in this item, is to employ quaternions described in item 15.

	
	
	
	
	

	62
	Pitch: Sensor Rotation about the translated Platform
Yp-axis
	Rotation around the once rotated sensor y’-axis” defined as the rotation of the sensor in the once rotated x'z'-plane of the sensor reference frame; measured as positive when the positive z'-axis rotates directly towards the positive x'-axis.


	M
	See Sensor Rotation about platform Xp-axis translated to sensor coordinate system origin.  Sensor pitch is the angular position of the sensor optical axis, measured about the once rotated platform pitch

axis (Yp).. Measured positive from the positive yaw axis vector (+Zp) toward the positive roll axis vector (+Xp) (clockwise looking in the +Yp direction).

An alternative method to determining sensor orientation angles, as described in this item, is to employ quaternions described in item 15.

	63
	Yaw: Sensor Rotation about translated Platform
Zp-axis
	Rotation around the sensor twice rotated z''-axis defined as the rotation of the sensor in the x''y''-plane of the sensor reference frame; measured as positive when the positive x''-axis rotates directly towards the positive y''-axis.


	M
	See Sensor Rotation about platform Xp-axis translated to sensor coordinate system origin.  Sensor yaw is the angular position of the sensor optical axis (line of sight), measured about the twice rotated platform yaw axis (Zp). It is the angle from the positive roll axis vector (+Xp) to the projection of the sensor optical axis onto the Xp-Yp plane. Measured positive from the positive roll axis vector (+Xp) toward the positive pitch axis vector (+Yp) (clockwise looking in the +Zp direction).

An alternative method to determining sensor orientation angles, as described in this item, is to employ quaternions described in item 15.

	64
	Quaternions of Attitude Reference Point


	A set of four quaternions (Q1, Q2, Q3, and Q4) derived from sensor ephemeris data that provide sensor attitude information required to process the sensor rigorous math model to perform geolocation and mensuration.
	C
	With ephemeris data for the platform, the derivation of the set of four Quaternions (Q1, Q2, Q3, and Q4) define sensor Attitude Reference Points in the ECEF coordinate system. 

Conditional only if platform ephemeris information is not available for airborne platform sensors.  Mandatory for satellite platform sensors.


Table 3

Hierarchical Order of Metadata Elements for Pushbroom Sensor Precise Geopositioning
The optimal situation is that for each Pushbroom Image segment:
POSIX (UTC) Image collection time,

the following set of parameters:
Sensor X, Y, Z Position (XL, YL, ZL), (1, 2, 3)
Sensor Orientation Data ((, (, (, (4, 5, 6) 

Principal point offset, x-axis(xo ) (7)
Principal point offset, y-axis (yo ) (8)

Focal Length or focal length correction (Δf  9)
Swath Field of View (10)

Maximum Scan Angle (11)

Scan Angle (θi) at Scan Line Time (t) (12)

Pushbroom Scan Duration (13)

Column element spacing value (14) are provided. 

In addition, the associated M(andatory) variance and covariance data:

Sensor position and attitude accuracy variance and covariance data (M)
Focal length variance data (M)
Principal point offset covariance data (O)

If an area (frame) sensor is used then the following parameters:

Lens radial distortion coefficients (k1, k2 (15, 16)

Decentering lens correction coefficients (p1, p2 (17, 18)

and covariance data:


Lens radial distortion covariance data (O)
Decentering lens correction covariance data (O) need to be directly available for that sensor image

Table 4

Hierarchical Order of Metadata Elements for Whiskbroom Sensor Precise Geopositioning

The optimal situation is that for each Whiskbroom Image framelet POSIX (UTC) Image collection time, 

the following set of parameters:

yo, Δf, k1, and k2.
Sensor X, Y, Z Position (XL, YL, ZL) (1, 2, 3)

Sensor Orientation Data ((, (, () (4, 5, 6) 

Principal point offset, x-axis (xo ) (7)
Principal point offset, y-axis (yo) (8)

Focal Length or focal length correction (Δf) (9)
Swath Field of View (10)

Maximum Scan Angle (11)

Scan Angle at Scan Line Time (t) (12)

Whiskbroom Scan Duration (dtscan) (13)

Whiskbroom Pixel Scan Duration (dtsample) (14)

Column element spacing value (15) are provided.

If an array collection is employed, then the following items should be provided:

Lens radial distortion coefficients (k1, k2 (16, 17)

Decentering lens correction coefficients (p1, p2 (18, 19)

Scale and skew correction coefficients (b1, b2 (20, 21)

In addition, the associated M(andatory) variance and covariance data:

Sensor position and attitude accuracy variance and covariance data (M)
Focal length variance data (M)
Principal point offset covariance data (O)

If an array collector is employed then these items are desired

Lens radial distortion covariance data (O)
Decentering lens correction covariance data (O) as directly available for that sensor framelet.

If these Table 3 or Table 4 items are not available then they must be created from other platform or sensor data.  For example, sensor position and sensor orientation can be developed by adjusting INS Platform Position and Attitude with the INS to Sensor Lever Arm data.
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Appendix A

Sensor Coordinate Systems, Projection Mode, and Full Stochastic Error Propagation Model Equations for the Standard Set of Six Exterior Orientation Parameters
1. Introduction:

The objective of this document is to provide the equations required to map covariance matrices of the individual error components of an imaging system to a full 6 by 6 covariance matrix associated with a standard sensor model.  The top left 3 by 3 is the covariance matrix associated with position and lower right 3 by 3 is associated with the standard three angles, δω, δφ, δκ, representing attitude errors about the x, y, z axes, respectively, of a sensor coordinate system.  These three angles represent the collective effects of several other orientation angles which will be elaborated in the following sections.

2. Coordinate Systems:

Figures 1 and 2 illustrate the coordinate systems involved in a typical airborne optical imaging system, namely Geocentric (g), North-East-Down, or NED (n), Platform (p), Sensor (s), and Record (r).  Such a configuration is consistent with the 2009 versions of SENSRB and EG0801 documents.  The NED and platform systems have the same origin at the center of navigation.  When all platform angles (heading, pitch, and roll) are zeros, these two systems are coincident.  Occasionally, a local object coordinate system, East-North-Up, or ENU, is used in place of the Geocentric system.  However, for this development the Geocentric is selected because of being the desired standard.
As shown in Figure 2, the camera perspective center location is a function of the GPS antenna location, the base (aka lever arm) vector from the origin of the GPS antenna to the perspective center, and the platform attitude with respect to the GCS.  

[image: image170]
Figure 1.  Coordinate Systems overlaid on aircraft


[image: image171]
Figure 2.  Sensor and Record Coordinate Systems as viewed on a monitor

3. Projection Model:

The following derivation will, in general, use the matrix notation Mb/a to designate an orthogonal matrix that rotates coordinate system “a” until it is parallel with coordinate system “b”.   The collinearity equation can be written as follows:
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Eq. 86
Where x,y are image coordinates (shifted to the principal point and corrected for all systematic errors) in a Record Coordinate System (RCS); f is the focal length; k is a unique scale factor per ground point; X,Y,Z are ground coordinates in a Geocentric, or Earth-Centered-Earth-Fixed (ECEF), Coordinate System (GCS); and XL, YL, ZL are the coordinates of the sensor perspective center in the GCS; Mr/s is the orthogonal rotation matrix that aligns the sensor coordinate system to the image record coordinate system; Ms/p aligns the platform to the sensor coordinate system; Mp/n aligns the NED to the platform coordinate system; and Mn/g aligns the Geocentric to the NED coordinate system.  This Projection Model is applied for each sensor imaging event time value, once for each Frame array image, Pushbroom scan line, or Whiskbroom framelet.
As shown in Figure 1, the sensor perspective center location is a function of the GPS antenna location, the base (aka lever arm) vector from the origin of the GPS antenna to the perspective center, and the platform attitude with respect to the GCS.  Note that, as an example, the case where the perspective center (L) is also at the origin of the NED (and the platform) coordinate system or center of navigation was selected.  In Figure 1 of Section 2.1 of the Formulation Paper, the general case is shown where there is another offset vector from the platform origin to the image record perspective center.  The coordinates of the perspective center in the GCS are given by:
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Eq. 87
where bx, by, bz are the components of the base vector measured in the Platform Coordinate System.  By substituting Eq. 87 into Eq. 86, we obtain:
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Eq. 88
4. Stochastic Model:

In order to establish the covariance mapping equations, we must define the stochastic models for the standard sensor model and then for the example imaging system.

The stochastic model for the standard image record involves re-formulating Eq.86 such that it isolates the random variation to six adjustable parameters with zero expected values (these six parameters correspond to the standard six Exterior Orientation elements of an image); the middle part of Eq. 86 is re-written as follows:
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, which in expanded form becomes:
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Eq. 89
in which 
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.  The combined effect of all the component matrices, as represented by M, is the three “generic” sequential angles, ω, φ, κ, which can be extracted from the elements of M, if needed.  The attitude errors, all of which have zero expected value, are then manifested by the three terms, δω, δφ, δκ. 

The stochastic model for the example imaging system involves re-formulating Eq.88 such that it isolates each error component as follows:
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Eq. 90
where T and u are a temporary matrix and vector, respectively, used to break the long equation into two separate pieces as follows:
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Eq. 91
where M2R and M3R are the rotation matrices that are a function of gimbal resolver measurements in sensor pitch and heading, respectively; i.e., Mc/p = M2RM3R.  The R stands for resolver and the 2 and 3 correspond to the axis of rotation, i.e. about the current Y and Z axes, respectively. 
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Eq. 92
The terms
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 are error terms in the GPS platform position, and 
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 are error terms associated with the offset base; both sets are additive.  (All six error terms have zero mean expectations, and two finite 3 by 3 error covariance matrices, 
[image: image187.wmf]GG
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 and 
[image: image188.wmf]BB
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, respectively).  Errors in the platform orientation are matrix multiplicative and are given by the symbols 
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, in Eq. 7.  (The three error terms have zero expectations and a 3 by 3 covariance matrix, 
[image: image192.wmf]II

S

).  The error contributors can be grouped into vectors of random variables, GPS (G), INS (I), base (B), and gimbal resolver (R), as follows:
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Eq. 93
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Eq. 94
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Eq. 95
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Eq. 96
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Eq. 97
Note in Eq. 91 that the INS angle errors can be modeled in a combined matrix since the navigator performs calculations in an inertial system based on IMU measurements and Kalman Filtering; hence the output of such calculations is an attitude error covariance referenced to the current platform coordinate system.  However, the resolver angle errors need to be modeled in separate error covariance matrices since each angle measurement is made sequentially.

At a high level, we can summarize the covariance propagation required to map from example imaging system to standard frame system as follows:
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Eq. 98
where E, P, A represent exterior orientation, position, and attitude, respectively, of the standard record system; and f1, f2, and f3 symbolically represent functions.  Since the INS components appear in both P and A, clearly the covariance propagation will result in a full 6 by 6 covariance matrix, i.e. representing correlation between position and attitude.

We can now apply the general error propagation equation to the first line of Eq. 98 as follows:
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Eq. 99
where 
[image: image201.wmf]PP

S

 is the position covariance matrix,
[image: image202.wmf]AA

S

 is the attitude covariance matrix, and 
[image: image203.wmf]PA

S

 is the cross-covariance matrix between position and attitude.

Note that the 15 by 1 vector l’ is referenced in this equation instead of the 11 by 1 vector l.  We need to introduce fictitious observations with zero values and zero errors in order to facilitate the covariance propagation.  When a gimbal resolver measures an angle, e.g. in heading, it is known that the rotation and associated precision of the angles in pitch and roll will be zeros; hence the placeholders associated with Rp and Rr were zeroed out in the second expanded matrix of Eq. 91.  Similarly when the gimbal resolver measures the pitch, it is known that the rotation and associated precision of the angles in heading and roll will be zeros; hence the placeholders associated with Rh and Rr are zeroed out in the first expanded matrix of Eq. 91.

We can expand the Jacobian matrix in Eq. 99 as follows:
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Eq. 100
where the Jacobian sub-components corresponding to position can be obtained by referencing Eq. 87 as follows:
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Eq. 101
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Eq. 102
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Eq. 103
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Eq. 104
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Eq. 105
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Eq. 106
and the Jacobian sub-components corresponding to attitude can be obtained by referencing Eq.s 89 , 90, 91 and 92 as follows:
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Eq. 107
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Eq. 108
The covariance matrix for the 15 by 1 vector l’ can be constructed as follows:
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Eq. 109
The ∑GG, ∑BB, and ∑II matrices are in general full 3 by 3 covariance matrices provided in the image metadata.  The 6 by 6 covariance matrix ∑RR would be constructed as a function of the elements of a full 2 by 2 covariance matrix of resolver angles as follows: 
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Eq. 110
where 
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 are the variance of pitch resolver measurement, variance of heading resolver measurement, and covariance between pitch and heading resolver measurements, respectively. 

5. Matlab Example:

Synthetic Frame Image:

Focal length = 152mm

Flying height = 1000 m AGL = 1000 m HAE

4 check points, one at each corner of a 100mm by 100mm frame

Base (GPS to perspective center lever arm components, meters) = 15, 11, -12

Platform heading, pitch, roll (deg) = 40, -15, 13

Sensor heading, pitch (deg) = 45, -50 (note: -90 deg is nadir when platform is level)

Input Precisions:

Image coordinate sigmas = 0.015mm

Check point height sigmas = 1 m

GPS covariance (meters squared): 
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Base covariance (meters squared):  
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INS covariance (radians squared):   
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Gimbal resolver covariance (radians squared):  
[image: image222.wmf]ú
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Note that the magnitudes of some of the numbers are unrealistic, e.g. the base vector and the existence of correlation between resolver angles, but did not want to assume diagonal matrices in order to fully test the theory.

Note that the magnitudes of the elevation angles (90 degrees minus the off-nadir angle) for check points (CP) 1 through 4 were 60, 32, 57, and 30 degrees, respectively.

For these four check points, the following output provides a comparison of the 3 by 3 ground coordinate covariance matrix derived using the covariance mapping technique outlined above versus that derived using standard error propagation of all components directly.  Then, the results are shown for the case assuming a block diagonal of 3 by 3 sub-matrices, i.e. ignoring correlation between position and attitude.

5.1
Results using full 6 by 6 versus direct error propagation:
CP1.      
  220.618170037311         -40.9940694361992         0.271504504153547

        

 -40.9940694361992          352.766249870072        -0.540769287713719

       

  0.271504504153547        -0.540769287713719      1.00010607734182

         

 220.618170037241         -40.9940694361544         0.271504504153541

       

 -40.9940694361544         352.766249869869        -0.540769287713701

         

 0.271504504153541        -0.540769287713701      1.00010607734182

CP2.        
1208.92820880467          184.733458783294         -1.53820779310716

          

184.733458783294          469.045473082101         -1.06294413660742

       
           -1.53820779310723        -1.06294413660742         1.0008688509752

         

1208.92820880457        184.733458783221         -1.53820779310712

          

184.733458783221         469.045473082005         -1.06294413660738

          

-1.5382077931072         -1.06294413660739         1.0008688509752

CP3.

 190.677807214114         -128.486508018024         0.190176456243646

         

-128.486508018024          352.427637189316         0.647247263698036

        

 0.190176456243646         0.647247263698035      1.00013330292768

          

190.677807214043         -128.486508017952         0.190176456243651

         

-128.486508017952          352.427637189112         0.647247263698018

         

0.190176456243651         0.647247263698018       1.00013330292768

CP4.     
2359.69170296035         -1048.46783817954         -2.14793032601751

        

-1048.46783817954          1076.8600142002          1.28693774835313

        

-2.14793032601759         1.28693774835317          1.00113771021422

         

 2359.69170296007         -1048.46783817926         -2.14793032601753

         

-1048.46783817926          1076.86001420002          1.28693774835314

        

-2.14793032601748          1.28693774835308          1.00113771021422

5.2
Results assuming a block diagonal of 3 by 3 sub-matrices:
CP1.       
 221.778172948054         -42.0725039341913         0.271634601261149

        

 -42.0725039341913         363.131015549378        -0.541643820765941

        

 0.271634601261149        -0.541643820765941      1.00010615259039

         

 220.618170037241         -40.9940694361544         0.271504504153541

        

 -40.9940694361544         352.766249869869        -0.540769287713701

        

 0.271504504153541        -0.540769287713701       1.00010607734182

CP2
        
1199.87542860969          186.91711583948             -1.53671337553236

         

186.917115839481          467.609993108896           -1.06316837872444

        

-1.53671337553241         -1.06316837872445           1.0008685838565

          

1208.92820880457         184.733458783221          -1.53820779310712

         

184.733458783221         469.045473082005         -1.06294413660738

         

-1.5382077931072         -1.06294413660739          1.0008688509752

CP3.   
192.886019869503         -131.510885686274         0.189947663645153

        

-131.510885686274          361.577818631608         0.648040083681862

        

 0.189947663645153         0.648040083681862       1.00013337253685

          

190.677807214043         -128.486508017952         0.190176456243651

         

-128.486508017952          352.427637189112         0.647247263698018

         

0.190176456243651         0.647247263698018        1.00013330292768

CP4.       
2351.97152640524       -1050.11540157101        -2.14637694948784

         

-1050.11540157101       1072.41412797991          1.28669965521726

           
-2.146376949488          1.28669965521725          1.00113731841628

          

2359.69170296007         -1048.46783817926         -2.14793032601753

         

-1048.46783817926          1076.86001420002          1.28693774835314

         

-2.14793032601748          1.28693774835308          1.00113771021422

5.3
Observations:
As shown in the overall and the components results, the covariance mapping technique provides essentially equivalent results to direct error propagation of the individual components. 

The differences appear to be due to only round-off errors.
The differences between the two methods are significant (beyond round-off errors) in the case where the 6 by 6 exterior orientation covariance matrix is treated as a block diagonal (two 3 by 3 blocks, i.e. ignoring the cross covariance matrix 
[image: image223.wmf]PA

S

, in Eq. 9.
While the approach in this appendix addressed the case where the GPS antenna is offset from the camera perspective center, it can be extended to handle other cases, e.g. where the origins of the platform and gimbal systems do not coincide with the perspective center.
The covariance mapping technique presented in this appendix provides the additional benefit of, as a by-product, defining a reduced set of adjustable parameters for a sensor model in a standard reference frame.
Appendix B
Reference Frame Reorientation

Coordinate System Transformation: Common Origin with Three Sequential Rotations

Alignment of coordinate systems is accomplished via translations and reorientations through rotations.  Translating between different references is a simple linear shift in each axis; x, y, and z.  Axis alignment, or making the axis of each system parallel, is accomplished by three angular rotations as described below.
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Beginning with a coordinate system defined by (x,y,z), the first rotation will be about the x-axis by angle  (i.e., positive y-axis rotates toward the positive z-axis), see Figure 24.  The resulting orientation will be designated (x1,y1,z1).
Figure 24.  First of three coordinate system rotations
The second rotation will be by angle  about the once rotated y-axis (positive z1-axis rotates toward the positive x1-axis), see Figure 25.  The resulting orientation will be designated, (x2,y2,z2).

The final rotation will be by angle  about the twice rotated z-axis (positive x2-axis rotates toward the positive y2-axis), see Figure 26.  The resulting orientation will be designated, (x3,y3,z3).
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Figure 25.  Second of three coordinate system rotations

Figure 26.  Last of three coordinate system rotations

The resulting matrix M, as, for example that given in Equation 109 represents the orientation of one three-dimensional (3D) coordinate system with respect to another 3D system.  In this case it represents the change in orientation of the initial system, here designated by x1,y1,z1, to make it parallel to the final system, x3,y3,z3.  If the two systems related by M had a common origin, then M would be all that is needed to transform the coordinates with respect to x1,y1,z1, to coordinates with respect to x3,y3,z3 (by simply pre-multiplying the former by M to get the latter). 
2.1 Coordinate System Transformation: Combined rotation and translation

In most situations, the coordinate systems do not have the same origin, then the transformation from one to the other will involve translation in addition to rotation.  We have two possibilities: either rotating first to make the two systems parallel then translating, or translating first to make the two systems have the same origin then rotating.

Matters become somewhat complicated when we have to deal with more than three systems of coordinates which are neither parallel nor have a common origin.  In these situations, one has to be careful as to the rotation matrices and translation vectors to use.  As an illustration, we use a simplified two-dimensional example in order to demonstrate the sequencing requirements.  Beginning with a coordinate system defined by (x1,y1), we desire a transformation to a third coordinate system (x3,y3), via an intermediate coordinate system (x2,y2), see Figure 27.

[image: image273.jpg]


Figure 27.  Coordinate system transformation example

The first step is to transform from the initial reference to the second.  The option is to rotate first and then translate, or vice versa; but to be consistent throughout.  We chose to rotate first, then translate.  Therefore, transformation from the first frame to the second is illustrated by Figure 28.
[image: image274.bmp]
Figure 28.  First of two coordinate system transformations

The new orientation may now be defined by the following equation.


[image: image224.wmf]ú

û

ù

ê

ë

é

+

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

-

2

1

1

1

2

1

2

2

s

s

y

x

y

x

M


Eq. 111
where M1-2 is the rotation matrix that rotates frame one to be parallel to frame two, and s1 and s2 define the translations along x1’ and y1’ (or x2 and y2), respectively, to effect a common origin.

Similarly, the process for transforming from the second to the third frame is as shown in Figure 29.
This transformation may be defined by the following equation.
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Eq. 112
where M2-3 is the rotation matrix from frame two to frame three, and s1’ and s2’ define the translations along x2’ and y2’ (or x3 and y3), respectively.

The transformations above may be combined into a single equation as follows:
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Eq. 113
2.2 Coordinate System Transformation: 3D Transformations
Although more complex, a similar process is applied for a 3D transformation, as is needed for sensor modeling purposes.  In those cases, more intermediate transformations are likely to be necessary, particularly to account for multiple gimbals.
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Figure 29.  Last of two coordinate system transformations

2.3 Coordinate System Transformation: Space Rectangular and Corresponding Curvilinear or Geodetic Coordinates

[image: image276.wmf]w


Figure 30.  Rectangular and Curvilinear Coordinates

Ellipsoids used to model geometrically the shape and size of the earth are provided with values for the semi-major (usually named “
[image: image227.wmf]a

”) and semi-minor (usually named “b”) axes, the flattening coefficient or its inverse, and the eccentricity.  With that information, one can transform from the rectangular, geocentric coordinates to the curvilinear geodetic coordinates.

Assume in the most general case that a ground point, represented in Figure 30 as point A, has some height above ellipsoid, designated as “h”; assumed to be measured along the normal (N).

The equations transforming the geodetic coordinates ( and λ) and height above the ellipsoid (h) are:
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Eq. 114
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Eq. 115
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Eq. 116
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Eq. 117
Although the transformation from the geodetic to rectangular geocentric coordinates is straightforward, the inverse transformation is iterative to arrive at a correct  and λ.
Compute the distance in the X-Y plane:
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Eq. 118
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Eq. 119
Approximate  and follow the iterative process as follows:
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Eq. 120
Iterate on the next two equations until change in φ is minimized.
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Eq. 121
where  
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 is the value from the last iteration and
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Eq. 122
Once that has been computed, then solve for h:
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Eq. 123
Appendix C

Non- Sequential to Sequential Attitude Angle Conversion

Conversion of Non-sequential Angles into Sequential Angles

As described in Section 2.4.1 of the formulation paper, the pitch, roll, and yaw angles are often recorded independently or non-sequentially at a specific interval.  However, a sequential rotation system for the mathematical models in photogrammetric applications is typically used because of its simplicity and its close physical similarity to gimbaled systems.  Therefore, these non-sequential platform angles need to be converted to sequential angles.  The rotation process from the ground coordinate system to the orientation system of an aircraft incorporates the platform angles.  The relationship between the angular movement of the aircraft and the sequential rotation system needed for the photogrammetric application is described here.

For the platform angles, heading is considered first, pitch is second, finally roll is incorporated.

North, East, Down is a right-handed Cartesian ground (“World”) coordinate system.

Heading (H) is the rotation angle measured horizontally from North to East (Figure 31

) and clockwise is positive around the Zp and Down axes.


[image: image239]
Figure 31.  INS Heading angle

The rotation matrix is as follows:
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Eq. 124

Pitch (P) is the rotation angle, measured positively from the North-East plane around once rotated Yp-axis (already aligned through the above rotation); i.e., front-end up is considered the positive rotation.) 

[image: image241]
Figure 32.  INS pitch angle

This rotation is described in the following equation:
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Eq. 125


Roll angle (R) is the angle between the wing position and the horizontal plane, and right wing down is positive.  From Figure 33 although R is measured in a vertical plane, the wing position actually rotates around the X or N (North) axis by ( because of the pitch angle (P).  See Figure 34.
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Figure 33.  INS Roll Angle

This adjustment is made because the XY plane is no longer horizontal, given the rotation created by pitch.


[image: image243]
Figure 34.  INS Roll angle with Pitch
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Figure 35.  INS Roll angle determination

Therefore, this third rotation is accomplished with respect to an adjusted angle, theta; where theta is derived in the twice rotated coordinate system as follows (see Figure 26):
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Therefore,
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Eq. 128
where is the rotation angle about X3.
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Eq. 129
The complete transformation matrix between the NED coordinate frame to the aircraft frame, (Xp,Yp,Z
[image: image249.wmf]p

), using the three navigation angles of Heading, Pitch, and Roll adjusted for pitch (Figure 35.
) illustrates the combined effect.) is:
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Eq. 130
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Figure 36.  View of Rotations

The navigation angle rotation matrix from ground system to the platform (Equation 128) is converted to a sequential angle rotation matrix that can be expressed as follows:
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Eq. 131
where
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Eq. 134
The exterior orientation derivation process converts from the inertial navigation system or platform angles to an Euler rotation sequence between any two orthogonal coordinate systems where: ω is the first rotation about the X-axis; is the second rotation about the once rotated Y-axis, (after the first rotation); and κ is the third rotation about the twice rotated Z-axis, (after the first two rotations).  Using the elements mij in Eq. 34, the value of each sequential angle from the inertial angle rotation process are calculated from:
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Notes: 


  After applying sensor rotations as prescribed in SENSRB, xs is aligned with line-of-sight towards the object space


  The origin of the sensor and image record coordinate systems is at the perspective center a distance of f (focal length) from the image plane
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image record (xr , yr) coordinate system as defined in a Formulation Paper for either a Frame, Pushbroom, Whiskbroom sensor)
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� “Right-handed” in reference to the common orientation of the x-, y-, and z-axes and the fingers and thumb of the right hand.


� Diagram derived from Reference 6, Figure 8-1.


� EGM-2008 is a spherical harmonic model of the Earth’s gravitational potential complete to degree and order 2159.  The algorithm uses a table of constants (a pair of coefficients for each rank of each order of a polynomial) to calculate gravitational force and the vertical correction between the WGS 84 ellipsoid and the true geoid.  (� HYPERLINK "http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/index.html" ��http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/index.html�)
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