

EG Video Interpretability and Quality Measurement and Prediction 1

Engineering Guideline 1203

Video Interpretability and Quality Measurement and Prediction

MISB EG 1203.2

4 Oct 2012

Table 1 Revision History

Version Date Description

1
1 Oct 2012

Gathered all code and moved to Appendix. Responded to various

comments from June 2012 MISB meeting.

2 Nov 9 2012 Added missing code associated with opticalflow.m, responded to

comments from October MISB by clarifying PSNR and Quality coefficient

filenames. Updated coefficients.

EG Video Interpretability and Quality Measurement and Prediction 2

Contents
1. Scope .. 4

2. References .. 5

3. Definitions .. 5

4. Introduction ... 6

5. Normative: Video Interpretability Equation .. 8

5.1. Ground Sample Distance (GSD) calculation .. 10

5.2. Relative Edge Response (RER) Instantaneous Measurement ... 11

5.3. Noise Measurement , PSNR .. 12

5.4. Camera MOTION and Scene Discontinuity Icamera .. 14

5.5. Overall Scene Contrast and Dynamic Range, Icontrast .. 16

5.6. Mover Contrast and Discontinuity Imovers .. 17

5.7. Artifact Metrics ... 19

6. Normative Instantaneous Video Quality .. 21

7. Informative: Video IQ Verification Procedure .. 23

8. Appendix: Matlab Code .. 26

8.1. phasecongmono.m ... 26

8.2. function rmode = rayleighmode(data, nbins) ... 36

8.3. function noisevar = evar(y) ... 36

8.4. function score = func(L) .. 38

8.5. function [y,w] = dctn(y,w) ... 38

8.6. function blur = blurMetric(original) .. 40

8.7. function fr=frequency_ratio(img,Nsub,fcut) .. 41

8.8. function [mssim, ssim_map] = ssim(img1, img2, K, window, L) ... 42

8.9. [Acum Tcum iga]=opticalflow(iraw,iraw_old,ones(size(iraw)),1); .. 46

8.10. function[A, T] = computemotion(fx, fy, ft, roi) .. 47

8.11. function[A2, T2] = accumulatewarp(Acum, Tcum, A, T) ... 48

8.12. Vertical blocking detector code: ... 48

8.13. Horizontal blocking detector code: ... 48

8.14. function RER=perceptual_RER(iraw)... 49

8.15. % RES = blur(IM, LEVELS, FILT) .. 50

8.16. % RES = upConv(IM, FILT, EDGES, STEP, START, STOP, RES) ... 51

8.17. % RES = corrDn(IM, FILT, EDGES, STEP, START, STOP) .. 53

8.18. function probabilityVector=multinomialLogisticProbability(beta,x) .. 54

8.19. function[fx, fy, ft] = spacetimederiv(f1, f2) ... 55

8.20. function[f] = down(f, L); .. 55

9. Appendix .. 56

EG Video Interpretability and Quality Measurement and Prediction 3

EG Video Interpretability and Quality Measurement and Prediction 4

1. Scope
This document describes two equations: 1) the V-NIIRS interpretability estimation equation

that predicts the potential of the video to complete the tasks described in RP0901, “Video-

NIIRS”; 2) a video quality equation that predicts the overall appearance of the video.

The calculated interpretability and quality can be inserted into the metadata stream using the

keys defined in EG 1108, “Video Interpretability and Quality Keys”.

The difference between task-based interpretability and appearance-base video quality is

defined by Recommendation P.912, "Subjective video quality assessment methods for

recognition tasks," Recommendations of the ITU, Telecommunication Standardization Sector, 1-

10 (2008).

The rationale for introducing the two new equations is that well known video quality metrics

such as PSNR and SSIM judge the relative quality performance of encoders/decoders. However,

PSNR and SSIM either fail, or cannot be used for the following cases:

1. No uncompressed reference is available

2. Stabilization

3. Contrast enhancement

4. Sharpening

5. Super-resolution, upsampling, and downsampling cannot use SSIM or PSNR because of size

mismatch

6. When an intelligence interpretability metric is called for

7. When a metric is needed that takes advantage of existing metadata to analyze camera

settings and motion

The Video Interpretability and Quality Measurement and Prediction techniques address all of

the above situations where conventional metrics either are not suitable, or fail, or cannot be

computed.

General comments are provided for the situations where either full or partial reference is

available. Partial reference systems may employ sub-image chips and / or features in the

metadata per EG 1108. Downstream receiving stations can use the chip/feature metadata to

compute the Interpretability and Quality with improved accuracy.

EG Video Interpretability and Quality Measurement and Prediction 5

2. References
 [1] MISB RP 0901 Recommended Practice

[2] Young, D., Bakir T., Butto R., Duffield C., Petitti F., “Loss of Interpretability due to

Compression Effects as Measured by the New Video NIIRS”, Proc SPIE 7529, May 2010

[3] Peter Kovesi, "Image Features From Phase Congruency". Videre: A Journal of Computer Vision

Research. MIT Press. Volume 1, Number 3, Summer 1999 http://mitpress.mit.edu/e-

journals/Videre/001/v13.html (also see http://www.csse.uwa.edu.au/~pk/Research/research.html for

matlab code)

[4] Crété-Roffet F., Dolmiere T., Ladret P., Nicolas M , "The Blur Effect: Perception and Estimation with a
New No-Reference Perceptual Blur Metric", SPIE Proc. 6492,, (2007)

[5] Garcia,D. CRCHUM, University of Montreal Hospital available online at:

http://www.biomecardio.com/matlab
[6] Leachtenauer, J.C., Malila, W.M., Irvine, J., Colburn, L., Salvaggio, N., "General Image Quality

Equation:GIQE", APPLIED OPTICS, 36, 8322-8328 (1997)
[7] International Standard ISO 12233:2000(E) Photography -- Electronic still-picture cameras -

Resolution measurements
[8] P.D.Burns, “Slanted-Edge MTF for Digital Camera and Scanner Analysis”, Proc.IS&T 2000 PICS

Conference, pg.135-138, 2000.
[9] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.(1996): Numerical Recipes in C,

Cambridge University Press. Page 641

[10] ITU-T Recommendation BT.500-10, Methodology for the Subjective Assessment of the

Quality of Television Pictures, 2000.

[11] Joint Interoperability Test Command Motion Imagery Tool, online reference:

http://jitc.fhu.disa.mil/cgi/mislab/loaddoclisting.aspx?q=jmit

[12] Video Moving Target Indicator, MISB RP 903.2,
[13] Appendix of MISB Standard 404, Compression for Infrared Motion Imagery
[14] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: From

error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp.

600-612, Apr. 2004. https://ece.uwaterloo.ca/~z70wang/research/ssim/ssim_index.m

[15] EG 1108 Video Interpretability and Quality Keys, November, 2011, MISB

3. Definitions
A-FPS: Analysis Frames-Per-Second

Blind Metrics: Metrics measured without the benefit of a reference or known calibration

target.

DMOS: Difference Mean Opinion Scores, difference mean opinion score between a mean

opinion score for a source video data and a mean opinion score for the processed video data.

FPS: Frames-Per-Second sample frame rate.

http://mitpress.mit.edu/e-journals/Videre/001/v13.html
http://mitpress.mit.edu/e-journals/Videre/001/v13.html
http://www.csse.uwa.edu.au/~pk/Research/research.html
http://www.biomecardio.com/matlab

EG Video Interpretability and Quality Measurement and Prediction 6

Interpretability: Refers to the ability of the video to satisfy task-based criteria specified in the

Video-NIIRS.

MISB: Motion Imagery Standards Board (URL is http://www.gwg.nga.mil/misb)

NIIRS: National Imagery Interpretability Rating Scale

SSIM: Structural Similarity Index is a full reference metric that measures the similarity between two

images.

PSNR: Peak Signal-to-Noise Ratio

4. Introduction
This document describes prototype algorithmic capability for measuring Video Interpretability and

Quality metrics. No effort has been made to optimize the algorithms for runtime efficiency. The

algorithms have not been tested over the entire range of motion imagery conditions that can be

encountered.

Interpretability measures the potential of the video for intelligence task completion.

Quality measures the overall appearance of the video.

The Video-NIIRS (RP 0901) has interpretability levels ranging from 3 to 11. Spatial resolution is

expressed in Ground Sample Distance (GSD). Temporal resolution is measured by sample frame rate.

There are seven orders-of-battle: 1) Air Forces; 2) Electronics; 3) Ground Forces; 4) Missile; 5) Naval; 6)

Culture; 7) Security. Each order-of-battle has at least one task defined for each of the nine increasingly

difficult levels. An example of the most difficult level for the Culture order-of-battle:

“Confirm the movement of - a pedestrian's hands and fingers - as they make change or sort

coins - in a busy open market or square - (individual of average height & weight, sorting coins in

a change purse or the palm of one hand)”

Achievement of this task requires spatial and temporal resolution. Contrast with the least difficult task:

“Track the movement of - an oversized container carrying flatbed railcar – in motion - at a rail

yard - (140 ft. length flatbed rolling stock)

* Note – under-resolved smaller trucks or rolling stock may be evident based on behavior.”

EG Video Interpretability and Quality Measurement and Prediction 7

Much less spatial and temporal resolution is required because the object is large and slow moving.

The Video Quality has five levels: 1. Bad; 2. Poor; 3. Fair; 4. Good; 5. Excellent.

Video Quality set to zero indicates a forced setting that corresponds to “Bad”.

Quality definitions:

Excellent: no observable artifacts or video defects over sustained viewing intervals (1-hour).

Overall balance and clarity is exceptional.

Good: occasional artifacts are observed no more than once-per-minute. Edges and detail are

consistently sharp and well-contrasted.

Fair: consistent smooth video. Blurring and / or noise are barely noticeable. Annoyances

and artifacts occur no more than twice-per-minute.

Poor: annoyances are observed every few seconds, or sustained impairments, such as blur or

noise cause a noticeable and pronounced degradation.

Bad: content is barely discernable due to near constant presence of impairments

Interpretability and quality are functions of:

1) Object size and distance;

2) Lighting condition, sun angle;

3) Motion (both camera and object);

4) Scene complexity (number of similar objects, ...).

5) Task type (detection, recognition, identification, track);

6) Latency requirements (forensic or live);

7) Viewing angle;

8) Camera specifics (MTF, FPS, pixel count, ...);

9) Calibration (White balance, non-uniformity correction, bad pixel maps,…)

10) Atmosphere effects (turbulence, fog, ..);

11) Optics (mis-focus, aberrations,…);

12) Artifacts due to compression and transmission.

Section 5 describes the Video Interpretability equations.

EG Video Interpretability and Quality Measurement and Prediction 8

Section 6 describes the Video Quality equations.

5. Normative: Video Interpretability Equation
The instantaneous interpretability estimate for the kth frame is,

Ik = 14 - log2 (GSDk) - log2(1/ RERk) - exp(0.5*(PSNRc - PSNRk))

 - Icamera - Icontrast - Imovers - Iartifacts (1)

The equation is a function of resolution (GSD), blur (RER), noise (PSNR dB), camera/platform

motion (Icamera), overall contrast (Icontrast), foreground contrast and motion (Imovers) and

artifacts (Iartifacts).

The equation does not account for non-standard viewing conditions, or playback frame rates

other than the sample frame rate. Artifacts in this version are accounted for in PSNR. Iartifacts is

not used in this version, but reserved for accounting for specific transmission losses such as

missing macroblocks in future revisions of this document.

Ground Sample Distance (GSD) (described in Section 5.1) is the geometric mean of the

horizontal and vertical components in millimeters at the center of the frame.

The reference benchmark is the instantaneous Video NIIRS shall be 5 when the GSD is 528 millimeters

and all other motion image quality factors are high quality as shown in Table 2.

Table 2 – Reference Video-NIIRS for High Quality Video

Video NIIRS GSD(mm) RER pSNR

camera

motion

scene

contrast

mover

discon. &

contrast artifacts

3 2112 1 40 0 0 0 0

4 1056 1 40 0 0 0 0

5 528 1 40 0 0 0 0

6 264 1 40 0 0 0 0

7 132 1 40 0 0 0 0

8 66 1 40 0 0 0 0

9 33 1 40 0 0 0 0

10 17 1 40 0 0 0 0

11 8 1 40 0 0 0 0

I EFFECT SUBTRACTORS

EG Video Interpretability and Quality Measurement and Prediction 9

Relative Edge Response (RER) (described in Section 5.2) is a measure of the sharpness of an

image.

 RER shall be estimated using slanted-edge ISO method (ISO 12233:2000) if calibration is possible.

 Otherwise, when no calibration is possible, RER shall be estimated using the partial-reference technique.

 Otherwise when no partial-reference technique is possible, RER shall be estimated using the no-reference technique
described below.

PSNR (described in Section 5.3) is a measure of the noise and artifacts. PSNRc is the critical

point near which digital video rapidly loses interpretability. Video approaching this point is

dangerously near the digital cliff. PSNRc has been experimentally determined to be 26 dB.

 For video with known reference (uncompressed or lightly compressed), PSNR shall be estimated using the reference.

 Otherwise, when no reference is available, PSNR shall be estimated using the partial-reference technique.

 Otherwise, when no partial-reference technique is possible, PSNR shall be estimated using the no-reference
technique described below.

Acquisition and procurement specifiers are strongly advised to use reference based techniques

due to their inherent reproducibility and lower variance.

The no-reference techniques are dependent on operator usage and may not necessarily indicate

equipment faults. For example, rapid slewing or mode changes cause degradation based on

usage not inherent equipment capabilities.

Icamera (described in Section 5.4) accounts for the negative effects of excessive camera motion.

Icontrast (described in Section 5.5) modifies output based on overall scene contrast.

Imovers (described in Section 5.6) subtracts based on mover contrast and discontinuity.

Iartifacts (described in Section 5.7) subtracts based on image artifacts such as blockiness due

to compression and transmission errors.

Compounding of IR video to 8-bits is accomplished using the technique in the Appendix of

MISB Standard 404, Compression for Infrared Motion Imagery [13].

For SD, conversion of RGB color video to luminance values is accomplished via NTSC

conversion,

 L = 0.2989 R + 0.5870 G + 0.1140 B

Digital HD source conversion uses,

 L = 0.2126*R+0.7152*G+0.0722*B

If the input luma values are “studio swing” i.e. restricted to a range of 15-235, they shall be

converted “full swing” range of 0-255.

EG Video Interpretability and Quality Measurement and Prediction 10

All subsequent operations described below are on the luminance values.

A perceptual analysis window is chosen to select the salient features using phase congruency [3].

Phase congruency is not sensitive to variations in image illumination, blurring, and

magnification.

The phase congruency image is obtained from the intensity image, “iraw” as

 icon = phasecongmono(iraw);

The Matlab function listing is provided in the Appendix.

Perceptual analysis window specifications follow:

1. The minimum size in either height or width dimension is 256.

2. The perceptual analysis window shall have the same width to height ratio as the entire frame.

3. Both horizontal and vertical dimensions of the perceptual analysis window shall be a multiple of

32.

4. Nine, possibly overlapping, candidate windows shall be evaluated around frame center with

offsets 20% of overall frame height and center, respectively.

5. Phase congruency shall be calculated for each candidate window and summed over rows and

columns.

The candidate window with the greatest sum shall be selected for additional analysis as

described below.

Two features are computed from the phase congruency image.

MICON is the mean of the phase congruency image.

EICON is the entropy of the phase congruency image.

The analysis frame rate, A-FPS shall be greater than 20% of the sample frame rate. For example

for 30 FPS video, the analysis frame rate (A-FPS) shall be greater than 6 Hz, that is, no less than

every 5th frame shall be analyzed.

In no case shall the time between analysis frames be more than 1 second.

A-FPS shall be set equal to FPS when waves and or similar textures (trees in the wind) are being

analyzed to prevent background motion being interpreted as artifact noise.

5.1. Ground Sample Distance (GSD) calculation

GSD is calculated from the metadata. It is important that the GSD related metadata be

accurately re-sampled to be frame synchronous.

EG Video Interpretability and Quality Measurement and Prediction 11

A 10% error in GSD causes a 3% error in Video NIIRS at the benchmark case of 230mm (Video-

NIIRS = 5).

A 10% error in GSD at Video-NIIRS = 8 causes a 2% error in Video NIIRS, however a 10% GSD

error is just 3 millimeters.

Required metadata elements are:

1. R =Tag #21 in MMS (0902) “Slant Range” in meters

2. h =Tag #16 in MMS Field of View Horizontal (degrees)

3. v =Tag #17 in MMSField of View Vertical (degrees)

4.  = Sensor Principal Axis Elevation Angle Relative to local

horizontal plane (radians, computed using procedure

outlined in 6.2.4 “Euler Order of Operations” in UAS Local

Dataset, STD 0601.05)

(2)

5.2. Relative Edge Response (RER) Instantaneous Measurement

The cumulative blurring due to atmosphere and image chain can be a primary cause of video

degradation. The RER parameter is the second most important after GSD.

Manual RER when a slanted-edge reference is available

The ISO 12233:2000 blur metric is computed using the method described in [7] and [8].

 Automatic, No-reference RER estimate

Individual RER estimates are derived from the blind blur metric (BM), the Edge Intensity (EI),

the perceptual-RER (pRER), and the Frequency Ratio (FR):

RER(BM) = 1.17 - 1.15*BM (3)

RER(EI) = -0.28 + 1.3*(EI/100) ^(1/4) (4)

RER(pRER) = 0.10 + 0.55*pRER (5)

RER(FR) = -0.26 + 3*(FR)^(1/4) (6)

The no-reference RER estimate is the average of the four individual RER estimates,

RER = (RER(BM) + RER(EI) + RER(pRER) + RER(FR))/4 (7)

EG Video Interpretability and Quality Measurement and Prediction 12

The combined estimate has a standard deviation of error of 0.1 for normal scene content with

sufficient spatial energy. An RER error of 0.1 equates to 0.25 Video NIIRS error.

A special intermittent error condition can occur when the scene does not contain any spatial

energy such as sky, smooth water, or featureless desert. In this case, the instantaneous RER

estimate may be erroneously low; however, this temporary condition will be detected and

filtered out in subsequent processing. See Section 6.1 “Filtering Instantaneous Estimates”.

Sustained operation over sea state 0 or 1 requires additional research. Sea states greater than

2 should generate enough features for RER computation, although this remains to be tested.

Individual RER estimates are described below.

 Blind Blur Metric, BM

The blur metric is estimated using the method described in [4].

 Edge Intensity, EI

Edge intensity is,

= , (8)

where, gx and gy are the Sobel horizontal and vertical filtered versions of the input image.

 Perceptual-RER (pRER)

Perceptual-RER is a blind technique that uses phase congruency and morphological operations

to estimate the edge response. The matlab code list is in the Appendix.

 Frequency Ratio, Fr

The Frequency Ratio is computed by taking the ratio of high-pass to low-pass energy. A cut-off

frequency of 0.15 shall be used. Matlab code listing is in the Appendix.

 Partial-Reference RER Metric

At the source each frame is divided into regions. Each region is analyzed for edge energy. Once

a qualified, high-edge energy region is found, the blur is estimated. The location of the region

and the blur value is sent.

At the receiver a similar computation is performed. Comparison of the blur estimates indicates

distortion in the channel.

5.3. Noise Measurement , PSNR

Noise Metric when a reference is available

Standard PSNR is used when a reference is available.

EG Video Interpretability and Quality Measurement and Prediction 13

PSNR is defined via the mean squared error (MSE) which for two m×n monochrome images I

and K where one of the images is considered a noisy approximation of the other is defined as:

 
21 1

0 0

1
(,) (,)

m n

i j

MSE I i j K i j
mn

 

 

  
 (9)

The PSNR is defined as:

PSNR=10*log10(MAXi/MSE) (10)

MAXI is the maximum possible pixel value of the image. When the pixels are represented using

8 bits per sample, this is 255.

 No-Reference Instantaneous PSNR Estimate

The PSNR, when no reference is available, is estimated by applying a weighted sum to a feature

vector and its pairwise components.

Additional accuracy can be gained by averaging over multiple frames. See Section 6.1 “Filtering

Instantaneous Estimates”.

The feature vector has the following 11-elements. The 3rd element ,“Evar” is described in

Reference [5] which also points to source code.

V(1)=Fr=frequency_ratio(iraw,256,fc);

V(2)=BM=blurMetric(iraw);%blur metric,

V(3)=Evar=evar(iraw);

V(4)=MICON=mean(mean(icon));

V(5)=EICON=entropy(icon);

V(6)=EI=edge_intensity(iraw);

V(7)=STD=std(double(iraw(:))); standard deviation of intensity

V(8)=MSSIM= SSIM using stabilization

V(9)=LAMD=lamd;

V(10)=BLOCKV=r;

V(11)=GM=sum(abs(TCUM)); (16)

The number of coefficients is n(n-1)/2+n+1. For n=11 there are 67 coefficients. The coefficients

are controlled separately from this document.

The psnr coefficients shown in Table xx in Appendix are from the file “psnrcofs001.csv”. The

version number of the psnr coefficient file shall be indicated in the metadata using the “PSNR

EG Video Interpretability and Quality Measurement and Prediction 14

Coefficient Identifier” (see 5.5 of EG 1108). PSNR coefficients are controlled separately from

this document. Multiple PSNR coefficient files are needed as the motion imagery training set

encompasses more situations. For example, it may be that each IR band has its own PSNR

coefficient file.

 Partial-Reference Noise Metric

At the source each frame is divided into regions. Each region is analyzed for edge energy. Once

a qualified, homogenous, low-edge energy region is found the noise is estimated. The location

of the region and the noise value is inserted into the stream metadata and transmitted along

with the stream.

At the receiver a similar computation is performed. Comparison of the noise estimates

indicates distortion in the channel.

5.4. Camera MOTION and Scene Discontinuity Icamera
Excessive translation between analysis frames causes a loss of interpretability. Scene translation

discontinuity is defined as,

scene-xy=(A-FPS/FPS)(1/Fs), (11)

where Fs is the fractional overlap between analysis frames. For example, if there is 50% overlap

between the current frame and the previous analysis frame then Fs=0.5 and 1/Fs=2. If the analysis

frames are 5 video frames apart then (A-FPS/FPS)=(1/5). For this example, scene-xy=2/5=0.4.

Computation of scene overlap between analysis frames is not needed when the metadata indicates

rapid slewing. Below is a simple test for Fs=0 based on the metadata.

If Fs=0, scene-xy is set to “realmax” (largest real number representable by the system).

Fast algorithm assumes 4-corner metadata is stored in r1 vector for current frame and r2 vector for

previous frame, e.g. for current frame:

EG Video Interpretability and Quality Measurement and Prediction 15

r1(1,1)=lon1

r1(2,1)=lon2

r1(3,1)=lon3

r1(4,1)=lon4

r1(1,2)=lat1

r1(2,2)=lat2

r1(3,2)=lat3

r1(4,2)=lat4

then perform the following tests:

maxX1 = max(r1(:, 1));

maxY1 = max(r1(:, 2));

minX1 = min(r1(:, 1));

minY1 = min(r1(:, 2));

maxX2 = max(r2(:, 1));

maxY2 = max(r2(:, 2));

minX2 = min(r2(:, 1));

minY2 = min(r2(:, 2));

boundingBox=0; %initialize to assume no-overlap

if(minX1 <= maxX2) %Do a fast bounding box intersection to quickly rule

out no intersection

 %

 if(maxX1 >= minX2)

 if(maxY1 >= minY2)

 if(minY1 <= maxY2)

 boundingBox = 1;

 end

 end

 end

end

If the quick metadata test indicates there are zero common pixels between analysis frames(Fs=0

because boundingBox=0), and the ground speed of the center point is greater than 322 Km/H (200

MPH) then the instantaneous Video-NIIRS and the instantaneous Video Quality shall be set to zero

during the slewing interval. REASON CODE: SLEW

EG Video Interpretability and Quality Measurement and Prediction 16

Otherwise, if the metadata test indicates overlap, then global camera motion is measured between the

current analysis window (iraw) and the previous analysis window (iraw_old) using a rigid model of

rotation and translation implemented by the matlab function, “opticalflow” shown in the Appendix.

The following pertains to “opticalflow.m”:

The 3rd argument controls the Region-of-Interest which is set to the entire size of the analysis window.

The last argument controls a downsampling parameter which is not used. The called functions are also

shown below. Downsampling is an integer number . More motion between analysis frames requires a

larger downsampling number. Translational motion of up to 25 pixels between analysis frames can be

estimated with downsampling parameter set to 5.

The output arguments of interest are the vertical and horizontal translations shifts in the

“Tcum” vector, and the variable “iga” which is the previous analysis window rotated and

translated to match the current one. “Acum” is not used.

A rolling buffer of Tcum(1) is stored in “vvec” and analyzed to determine video high frequency instability

in the vertical dimension.

A rolling buffer of Tcum(2) is stored in “hvec” and analyzed to determine video high frequency instability

in the horizontal dimension.’

The length of vvec and hvec rolling buffers shall be 30.

A rolling buffer stores a new measurement at its head and deletes the oldest measurement at its tail as

new data is available to be stored.

The standard deviation of the detrended rolling buffer is the video spatial jitter metric.

Detrending is a linear fit that most nearly makes the data zero-mean.

If either the vertical or horizontal spatial jitter metric is greater than 16 then the instantaneous Video

NIIRS and the instantaneous Video Quality shall be set to zero. REASON CODE: JITTER

5.5. Overall Scene Contrast and Dynamic Range, Icontrast

Overall scene contrast is computed by taking the histogram of the analysis frame. If the 80%

percentile point is above the intensity value of 220 then instantaneous Video-NIIRS and the

instantaneous Video Quality shall be set to zero. REASON CODE:OVERSAT.

EG Video Interpretability and Quality Measurement and Prediction 17

Overall scene contrast is computed by taking the histogram of the analysis frame. If the 80%

percentile point is above the intensity value is less than 35 then instantaneous Video-NIIRS and

the instantaneous Video Quality shall be set to zero. REASON CODE: UNDERSAT

If the width of the histogram is too narrow as measured by the 2
nd

 moment then detail cannot be

resolved. If intensity<15 (8-bit imagery) then instantaneous Video-NIIRS and the instantaneous

Video Quality shall be set to zero. REASON CODE: DYNAMIC RANGE

Given values are for 8-bit imagery. Appropriate adjustments shall be made for other bit depths.

5.6. Mover Contrast and Discontinuity Imovers

Methods for detection and tracking of movers are outside the scope of this document.

However, if information concerning movers is available (e.g. Video Moving Target Indicator, RP

903.2 [12]) it can be used to more accurately gauge the interpretability. If this information, or

equivalent, is not available, Imovers =0.

Mover contrast and discontinuity is grouped together because the detection limit depends on size,

speed, and contrast.

The mean modulation contrast surrounding the mover is computed in at least 4 directions,

), (12)

where,

 and (13)

 Cm is the mover contrast, Lout and Lin are the gamma-corrected pixel luminance values inside

and outside the mover contour.

The threshold contrast is predicted by the following equation (R-squared = 0.98)

Ct=abs(0.184/(sqrt(x0) + -0.8817*x1/(363.54 + (158.91+ x1)/x0)) - 0.02383) (14)

EG Video Interpretability and Quality Measurement and Prediction 18

Where xo is the target size in pixels and x1 is the target speed in pixels per-second.

Formula is only valid for standard viewing conditions where the imagery is displayed at its native

resolution on a device from a distance that does not degrade the ability to perceive the inherent detail.

More precise definitions for standard viewing conditions are available from the NGA Image Quality and

Utility (NIQU) organization.

If the measured contrast is less than the predicted threshold contrast (based on the size and speed of

the detected object) then the Video Interpretability is reduced according to the following.

Define Cr=log10(C/Ct) as the log of the ratio of the detected mover contrast to threshold.

Let N be number of detected movers with Cr less than 0.5.



I= amount to add to Video NIIRS estimate

Interpretability Advanced Pooling

If all detected Movers have Cr greater than 0. 5 then do not modify interpretability.

If all detected Movers have Cr less than 0 reduce I by 1.0, that is I=-1

Otherwise I=-N*0.2 .

For example:

If one detected mover has Cr less than 0.5 I=-0.2

If two detected movers have Cr less than 0.5 I=-0.4

If three detected movers have Cr less than 0.5 I=-0.6

If four detected movers have Cr less than 0.5 I=-0.8

In no case can Interpretability be less than 0.

EG Video Interpretability and Quality Measurement and Prediction 19

5.7. Artifact Metrics

Blockiness Detector

BLOCKV is feature 10 in PSNR feature vector (Section 5.3.2). Code listing is in the Appendix.

Modified SSIM (M-SSIM)

The structural similarity (SSIM) index is a method for measuring the similarity between two

images. It is usually applied between an uncompressed reference and the image being tested.

However, the M-SSIM metric applies the SSIM between the current analysis window and the

previous analysis window that has been warped by “opticalflow.m” to match. This technique is

not as sensitive as SSIM when used with a reference, but it is capable of detecting transitory

artifacts.

M-SSIM is feature 08 in PSNR feature vector (Section 5.3.2).

If Video Moving Target Indicator (VMTI), RP 903.2 [12] amplifying data is available, movers are

segmented and removed from the M-SSIM calculation.

A-FPS shall be set equal to FPS when video of waves and or similar textures are being analyzed

to prevent background motion being interpreted as artifact noise.

Before ssim can be called the current analysis window size shall be trimmed as follows:

[mr mc]=size(iga); %previous analysis frame warped to match current

igar=iga(32:mr-32,32:mc-32);

igr=iraw(32:mr-32,32:mc-32);% iraw is current analysis frame

The modified SSIM is computed by downsampling using Matlab imresize function

and then calling the ssim function.

M-SSIM=ssim(imresize(igar,.5),imresize(igr,.5)); see Reference [14] for

ssim.m

WARNING: Burned in metadata can make M-SSIM readings too low. Simple

metadata removal is not adequate for metadata that “floats”. That is it

neither is tied to the ground, or the camera. Cross-hairs float.

LAMBDA

This artifact metric is computed by warping the previous analysis frame to the current analysis

frame. Once the two frames are aligned the PSNR is computed between them using the current

analysis frame as the reference. The size and location of the warped region shall be adjusted to

avoid burned-in metadata.

EG Video Interpretability and Quality Measurement and Prediction 20

LAMBDA is feature 09 in PSNR feature vector.

Additional filtering is provided to reduce the effect of floating metadata. The filtering ensures

only a strong artifact registers. Otherwise, LAMBDA is set to zero.

dim=(abs(double(igr)-igar)); %current and warped frame difference

am=sum(sum(dim))/(m*n);

if km==1 %initialize for first frame

 ams(1)=am;

 amd=0;

end;

alpha=.35; %filtering parameter

if km>1

 ams(km)=alpha*am+(1-alpha)*ams(km-1); %exponential average

 amd=am-ams(km); %instantaneous relative to average

end;

if amd<0.01

 amd=0.01;

end;

lamd=log10(amd);

if lamd<0.1 %hard threshold prevents false artifact alarms

 lamd=0;

end;

LAMBDA=lamd;

If Video Moving Target Indicator (VMTI), RP 903.2 [12] amplifying data is available, movers are

segmented and removed from the LAMBDA calculation.

If VMTI information is not available, some other method shall be used to detect and remove

mover energy from the LAMBDA estimate.

A-FPS shall be set equal to FPS when video of waves and or similar textures are being analyzed

to prevent background motion being interpreted as artifact noise.

Instantaneous Global Motion (GM)

GM=sum(abs(Tcum))

EG Video Interpretability and Quality Measurement and Prediction 21

GM is feature 11 in PSNR feature vector .

opticalflow.m listing is in Appendix.

The metrics described above are used to predict PSNR and are not included in Iartifacts.

Iartifacts is reserved for future use to describe the effects of packet loss and inclusion of

additional metadata such as encoder psnr, and decoder error message.

Iartifacts shall be set to zero in this version.

6. Normative Instantaneous Video Quality
The probability of each quality class (Excellent, Good, Fair, Poor, Bad) shall be computed using

the following logistic model.

The video quality is assigned one of five values corresponding to BAD, POOR, FAIR, GOOD, or

EXCELLENT. The probability of each value is estimated by calculating a feature vector and applying

appropriate coefficients as shown in the following equations:

 (15)

 (16)

 (17)

 (18)

 (19)

Xi is a feature vector for the ith frame. Yi is the estimated quality class for the ith frame.

The class with the greatest probability is selected if it exceeds a minimum threshold probability.

The minimum threshold probability shall be 0.70.

For non-reference (blind) modes:

EG Video Interpretability and Quality Measurement and Prediction 22

If instantaneous Video Quality does not meet threshold probability, then a negative number

is also returned for Video Interpretability.

If instantaneous Video Quality is “BAD” then instantaneous Video Interpretability is set to

zero. REASON CODE: BAD

Table 3 - Video Quality Multinomial Logistic Likert Coefficients

No. Feature Description Feature Reference

0 2.2372 -3.5973 -4.7296 1.0965 constant term

1 65.931 95.154 50.395 -120.82 frequency_ratio(iraw,256,fc); RER section

2 8.865 -10.885 -12.388 10.187 blurMetric(iraw);%blur metric RER section

3 0.39482 0.38715 0.039475 0.89175 evar(iraw); PSNR section

4 -1408 -744.72 -193.23 -406.03 mean(mean(icon));

phase congruence

Ref [3]

5 23.268 19.658 9.5779 4.516 entropy(icon);

perceptual window

section

6 0.075755 0.23649 0.2627 -0.0731 edge_intensity(iraw); see RER section

7 -0.27688 -0.19997 -0.19399 0.09465 std(double(iraw(:))); std. of intensity

8 -25.824 -21.343 -5.6556 2.106
ssim(imresize(igar,.5),imresize(igr,.5

));

Reference [14] and

Artifacts Section

9 -7.7294 -6.7376 0.40658 7.5199 lamd; Artifacts Section

10 0.66441 0.42854 0.39753 0.2418 blockiness; Artifacts Section

11 -3.6211 -12.957 -14.232 -4.2786 perceptual_RER4(iraw); RER section

12 -0.08494 -0.0607 -0.03243 -0.0031 sum(abs(Tcum)); Motion section

Multinomial Logistic Coefficients

("beta" in probability equation)

The probability for each class is computed using the function multinomialLogisticProbability.m

(in the Appendix).

The quality coefficients shown are from the file “qualcofs003.csv”. The version number of the

coefficient file shall be indicated in the metadata using the “Quality Coefficient Identifier” (see

5.6 of EG 1108). Quality coefficients are controlled separately from this document.

Multiple Quality coefficient files are needed as the training motion imagery set increases. For

example, it may be that each IR band has its own Quality coefficient file.

Conversion of the 5-point scale to a 100-point scale is accomplished by multiplying by 20.

Conversion of 100-point Quality values to 5-point scale is accomplished by dividing by 20 and

rounding.

Filtering Instantaneous Estimates

Averaging is one type of filtering operation. Averaging provides a more stable estimate of the

interpretability and quality that is representative over a duration.

EG Video Interpretability and Quality Measurement and Prediction 23

Trimmed mean shall be applied to the instantaneous values to remove outliers in the averaging

buffer. The trimmed mean parameter alpha=0.05 discards spikes.

Averages are not valid across scene change boundaries. Scene change is in progress whenever

the 4-corners between adjacent analysis frames do not overlap, or when the metadata indicates

FOV change.

Averages are not valid across mode changes e.g. IR-to-EO or EO-to-IR.

Averages are not valid when switching from/to Black-Hot from/to White-Hot.

Whenever any of these changes are detected, the current averaging duration ends and the Video

Interpretability, Quality, and Rating Duration are inserted into the metadata stream per reference

[15] EG 1108. Interpretability and Quality Method ID shall be set to 0.

The Video Interpretability equation is for EO only. Use of the EO equation for IR modes is only

to give a sense of relative interpretability changes.

Statistical Quality Control shall be established on the instantaneous video quality estimates to

enable alerts based on abnormal readings outside of expected normal variations.

Exceedances are defined as any instantaneous measurement that is zero, or statistically out of

normal bounds.

If the measurement is zero, an exceedance count is incremented based on REASON CODE.

Number of exceedances per-hour, per-minute, and per-second are kept.

Instantaneous Video Quality shall be monitored to get number of “BAD” frames per-hour, per-

minute, and per-second.

Instantaneous Video Quality shall be monitored to get number of POOR” frames per-hour, per-

minute, and per-second.

Instantaneous Video Quality shall be monitored to get number of “FAIR” frames per-hour, per-

minute, and per-second.

Instantaneous Video Quality shall be monitored to get number of “GOOD” frames per-hour,

per-minute, and per-second.

Instantaneous Video Quality shall be monitored to get number of “EXCELLENT” frames per-

hour, per-minute, and per-second.

Instantaneous Video Quality shall be monitored to get number of “NOT-RATED” frames per-hour, per-

minute, and per-second.

7. Informative: Video IQ Verification Procedure

EG Video Interpretability and Quality Measurement and Prediction 24

Validation versus Verification

Validation assesses that the correct metric is selected to measure the performance of the task

in question. Verification assures that the selected metric operates correctly.

Video-NIIRS and Quality are metrics that predict interpretability and quality as rated by

humans. Using Video-NIIRS and Quality as metrics for other tasks could be sub-optimal, or

invalid.

Verification that the IQ keys exist and conform to their definitions in a formal sense, is

accomplished using the Joint Interoperability Test Command Motion Imagery Tool. (JMIT) [11].

Verification that the values of the IQ keys actually represent the interpretability and quality of

the motion imagery is accomplished as follows.

Assemble Test Set

Test set shall be multiple source video segments with varying content. Each source segment

shall be at least 10-seconds and not contain extreme zoom changes. Segments shall differ in

content with respect to Ground Sample Distance (GSD) and quality. Additional segments can be

derived from the source segments to simulate distortion or processing improvements.

Perform Video Interpretability and Quality Ratings

Segments are viewed and rated to obtain Video-NIIRS and DMOS ratings. Statistical power,

resolution, accuracy and precision are increased with additional raters. Suggest at least five raters

for minor studies and at least 15 for more important ones.

If comparing source segments to derived segments, both shall be presented to the rater.

Scaling Quality Subjective Data

Quality score scaling shall be performed for each subject individually across all data points.

A scaled rating is calculated as follows: scaled rating = (raw difference score - Min) / (Max - Min)

where Max = largest raw difference score for that subject and Min = minimum raw difference score

for that subject. Note that the Max difference corresponds to the poorest judged quality, and Min

corresponds to the best judged quality.

Eliminating subjects

Data from raters that have clearly misinterpreted the directions and are rating using opposite

polarity can be eliminated.

Objective Data Analysis

Performance of the objective models is evaluated with respect to three aspects:

EG Video Interpretability and Quality Measurement and Prediction 25

 prediction accuracy – the ability to predict the subjective quality ratings with low error,

 prediction monotonicity – the degree to which the model’s predictions agree with the

relative magnitudes of subjective quality ratings and

 prediction consistency – the degree to which the model maintains prediction accuracy

over the range of video test sequences, i.e., that its response is robust with respect to a

variety of video impairments.

Metrics relating to Prediction Accuracy, Metric 1: The Pearson linear correlation coefficient

between predicted and manual. Pearson values greater than 0.8 indicate good accuracy.

Metrics relating to Prediction Monotonicity, Metric 2: Spearman rank order correlation

coefficient between predicted and manual. Spearman rank order correlation coefficients

indicate good monotonicity.

Metrics relating to Prediction Consistency, Metric 3: Outlier Ratio of “outlier-points” to total

points N.

Outlier Ratio = (total number of outliers)/N (20)

where an outlier is a point for which: ABS[Error[i]] > 2StandardError[i].

Twice the Standard Error is used as the threshold for defining an outlier point. Outlier ratio less

than 10% indicates good prediction consistency.

EG Video Interpretability and Quality Measurement and Prediction 26

8. Appendix: Matlab Code

8.1. phasecongmono.m
% PHASECONGMONO - phase congruency of an image using monogenic filters

%

% This code is considerably faster than PHASECONG3 but you may prefer the

% output from PHASECONG3's oriented filters.

%

% There are potentially many arguments, here is the full usage:

%

% [PC or ft T] = ...

% phasecongmono(im, nscale, minWaveLength, mult, ...

% sigmaOnf, k, cutOff, g, noiseMethod)

%

% However, apart from the image, all parameters have defaults and the

% usage can be as simple as:

%

% phaseCong = phasecongmono(im);

%

% Arguments:

% Default values Description

%

% nscale 5 - Number of wavelet scales, try values 3-6

% minWaveLength 3 - Wavelength of smallest scale filter.

% mult 2.1 - Scaling factor between successive filters.

% sigmaOnf 0.55 - Ratio of the standard deviation of the Gaussian

% describing the log Gabor filter's transfer

function

% in the frequency domain to the filter center

frequency.

% k 2.0 - No of standard deviations of the noise energy

beyond

% the mean at which we set the noise threshold

point.

% You may want to vary this up to a value of 10 or

% 20 for noisy images

% noiseMethod -1 - Parameter specifies method used to determine

% noise statistics.

% -1 use median of smallest scale filter

responses

% -2 use mode of smallest scale filter responses

% 0+ use noiseMethod value as the fixed noise

threshold

% A value of 0 will turn off all noise

compensation.

% cutOff 0.5 - The fractional measure of frequency spread

EG Video Interpretability and Quality Measurement and Prediction 27

% below which phase congruency values get

penalized.

% g 10 - Controls the sharpness of the transition in

% the sigmoid function used to weight phase

% congruency for frequency spread.

%

% Returned values:

% PC - Phase congruency indicating edge significance

% or - Orientation image in integer degrees 0-180,

% positive anticlockwise.

% 0 corresponds to a vertical edge, 90 is horizontal.

% ft - Local weighted mean phase angle at every point in the

% image. A value of pi/2 corresponds to a bright line, 0

% corresponds to a step and -pi/2 is a dark line.

% T - Calculated noise threshold (can be useful for

% diagnosing noise characteristics of images). Once you know

% this you can then specify fixed thresholds and save some

% computation time.

%

% Notes on specifying parameters:

%

% The parameters can be specified as a full list eg.

% >> PC = phasecongmono(im, 5, 3, 2.5, 0.55, 2.0);

%

% or as a partial list with unspecified parameters taking on default values

% >> PC = phasecongmono(im, 5, 3);

%

% or as a partial list of parameters followed by some parameters specified

via a

% keyword-value pair, remaining parameters are set to defaults, for example:

% >> PC = phasecongmono(im, 5, 3, 'k', 2.5);

%

% The convolutions are done via the FFT. Many of the parameters relate to

the

% specification of the filters in the frequency plane. The values do not

seem

% to be very critical and the defaults are usually fine. You may want to

% experiment with the values of 'nscales' and 'k', the noise compensation

factor.

%

% Notes on filter settings to obtain even coverage of the spectrum

% sigmaOnf .85 mult 1.3

% sigmaOnf .75 mult 1.6 (filter bandwidth ~1 octave)

% sigmaOnf .65 mult 2.1

% sigmaOnf .55 mult 3 (filter bandwidth ~2 octaves)

%

% See Also: PHASECONG, PHASECONG2, PHASECONG3, PHASESYMMONO, GABORCONVOLVE,

PLOTGABORFILTERS

EG Video Interpretability and Quality Measurement and Prediction 28

% References:

%

% Peter Kovesi, "Image Features From Phase Congruency". Videre: A

% Journal of Computer Vision Research. MIT Press. Volume 1, Number 3,

% Summer 1999 http://mitpress.mit.edu/e-journals/Videre/001/v13.html

%

% Michael Felsberg and Gerald Sommer, "A New Extension of Linear Signal

% Processing for Estimating Local Properties and Detecting Features".

DAGM

% Symposium 2000, Kiel

%

% Michael Felsberg and Gerald Sommer. "The Monogenic Signal" IEEE

% Transactions on Signal Processing, 49(12):3136-3144, December 2001

%

% Peter Kovesi, "Phase Congruency Detects Corners and Edges". Proceedings

% DICTA 2003, Sydney Dec 10-12

% August 2008 Initial version developed from phasesymmono and phasecong2

% where local phase information is calculated via Monogenic

% filters. Simplification of noise compensation to speedup

% execution. Options to calculate noise statistics via median

% or mode of smallest filter response.

% April 2009 Return of T for 'instrumentation' of noise

% detection/compensation. Option to use a fixed threshold.

% Frequency width measure slightly improved.

% June 2009 20% Speed improvement through calculating phase deviation

via

% acos() rather than computing cos(theta)-|sin(theta)| via dot

% and cross products. Also much smaller memory footprint

% Copyright (c) 1996-2009 Peter Kovesi

% School of Computer Science & Software Engineering

% The University of Western Australia

% pk @ csse uwa edu au

% http://www.csse.uwa.edu.au/

%

% Permission is hereby granted, free of charge, to any person obtaining a

copy

% of this software and associated documentation files (the "Software"), to

deal

% in the Software without restriction, subject to the following conditions:

%

% The above copyright notice and this permission notice shall be included in

all

% copies or substantial portions of the Software.

%

% The software is provided "as is", without warranty of any kind.

EG Video Interpretability and Quality Measurement and Prediction 29

function [PC, or, ft, T] = phasecongmono(varargin)

 % Get arguments and/or default values

 [im, nscale, minWaveLength, mult, sigmaOnf, k, ...

 noiseMethod, cutOff, g] = checkargs(varargin(:));

 epsilon = .0001; % Used to prevent division by zero.

 [rows,cols] = size(im);

 IM = fft2(im); % Fourier transform of image

 sumAn = zeros(rows,cols); % Matrix for accumulating filter

response

 % amplitude values.

 sumf = zeros(rows,cols);

 sumh1 = zeros(rows,cols);

 sumh2 = zeros(rows,cols);

 % Pre-compute some stuff to speed up filter construction

 %

 % Set up u1 and u2 matrices with ranges normalised to +/- 0.5

 % The following code adjusts things appropriately for odd and even values

 % of rows and columns.

 if mod(cols,2)

 xrange = [-(cols-1)/2:(cols-1)/2]/(cols-1);

 else

 xrange = [-cols/2:(cols/2-1)]/cols;

 end

 if mod(rows,2)

 yrange = [-(rows-1)/2:(rows-1)/2]/(rows-1);

 else

 yrange = [-rows/2:(rows/2-1)]/rows;

 end

 [u1,u2] = meshgrid(xrange, yrange);

 u1 = ifftshift(u1); % Quadrant shift to put 0 frequency at the corners

 u2 = ifftshift(u2);

 % Compute frequency values as a radius from centre (but quadrant shifted)

 radius = sqrt(u1.^2 + u2.^2);

 % Get rid of the 0 radius value in the middle (at top left corner after

 % fftshifting) so that taking the log of the radius, or dividing by the

 % radius, will not cause trouble.

 radius(1,1) = 1;

 % Construct the monogenic filters in the frequency domain. The two

EG Video Interpretability and Quality Measurement and Prediction 30

 % filters would normally be constructed as follows

 % H1 = i*u1./radius;

 % H2 = i*u2./radius;

 % However the two filters can be packed together as a complex valued

 % matrix, one in the real part and one in the imaginary part. Do this by

 % multiplying H2 by i and then adding it to H1 (note the subtraction

 % because i*i = -1). When the convolution is performed via the fft the

 % real part of the result will correspond to the convolution with H1 and

 % the imaginary part with H2. This allows the two convolutions to be

 % done as one in the frequency domain, saving time and memory.

 H = (1i*u1 - u2)./radius;

 % The two monogenic filters H1 and H2 are not selective in terms of the

 % magnitudes of the frequencies. The code below generates bandpass

 % log-Gabor filters which are point-wise multiplied by IM to produce

 % different bandpass versions of the image before being convolved with H1

 % and H2

 % First construct a low-pass filter that is as large as possible, yet

falls

 % away to zero at the boundaries. All filters are multiplied by

 % this to ensure no extra frequencies at the 'corners' of the FFT are

 % incorporated as this can upset the normalisation process when

 % calculating phase congruency

 lp = lowpassfilter([rows,cols],.4,10); % Radius .4, 'sharpness' 10

 for s = 1:nscale

 wavelength = minWaveLength*mult^(s-1);

 fo = 1.0/wavelength; % Centre frequency of filter.

 logGabor = exp((-(log(radius/fo)).^2) / (2 * log(sigmaOnf)^2));

 logGabor = logGabor.*lp; % Apply low-pass filter

 logGabor(1,1) = 0; % Set the value at the 0

frequency point of the filter

 % back to zero (undo the radius

fudge).

 IMF = IM.*logGabor; % Bandpassed image in the frequency domain.

 f = real(ifft2(IMF)); % Bandpassed image in spatial domain.

 h = ifft2(IMF.*H); % Bandpassed monogenic filtering, real part

of h contains

 % convolution result with h1, imaginary

part

 % contains convolution result with h2.

 h1 = real(h);

 h2 = imag(h);

 An = sqrt(f.^2 + h1.^2 + h2.^2); % Amplitude of this scale component.

 sumAn = sumAn + An; % Sum of component amplitudes over

scale.

EG Video Interpretability and Quality Measurement and Prediction 31

 sumf = sumf + f;

 sumh1 = sumh1 + h1;

 sumh2 = sumh2 + h2;

 % At the smallest scale estimate noise characteristics from the

 % distribution of the filter amplitude responses stored in sumAn.

 % tau is the Rayleigh parameter that is used to describe the

 % distribution.

 if s == 1

 if noiseMethod == -1 % Use median to estimate noise

statistics

 tau = median(sumAn(:))/sqrt(log(4));

 elseif noiseMethod == -2 % Use mode to estimate noise statistics

 tau = rayleighmode(sumAn(:));

 end

 maxAn = An;

 else

 % Record maximum amplitude of components across scales. This is

needed

 % to determine the frequency spread weighting.

 maxAn = max(maxAn,An);

 end

 end % For each scale

 % Form weighting that penalizes frequency distributions that are

 % particularly narrow. Calculate fractional 'width' of the frequencies

 % present by taking the sum of the filter response amplitudes and

dividing

 % by the maximum component amplitude at each point on the image. If

 % there is only one non-zero component width takes on a value of 0, if

 % all components are equal width is 1.

 width = (sumAn./(maxAn + epsilon) - 1) / (nscale-1);

 % Now calculate the sigmoidal weighting function.

 weight = 1.0 ./ (1 + exp((cutOff - width)*g));

 % Automatically determine noise threshold

 %

 % Assuming the noise is Gaussian the response of the filters to noise

will

 % form Rayleigh distribution. We use the filter responses at the

smallest

 % scale as a guide to the underlying noise level because the smallest

scale

 % filters spend most of their time responding to noise, and only

 % occasionally responding to features. Either the median, or the mode, of

 % the distribution of filter responses can be used as a robust statistic

to

EG Video Interpretability and Quality Measurement and Prediction 32

 % estimate the distribution mean and standard deviation as these are

related

 % to the median or mode by fixed constants. The response of the larger

 % scale filters to noise can then be estimated from the smallest scale

 % filter response according to their relative bandwidths.

 %

 % This code assumes that the expected reponse to noise on the phase

 % congruency calculation is simply the sum of the expected noise

responses

 % of each of the filters. This is a simplistic overestimate, however

these

 % two quantities should be related by some constant that will depend on

the

 % filter bank being used. Appropriate tuning of the parameter 'k' will

 % allow you to produce the desired output. (though the value of k seems

to

 % be not at all critical)

 if noiseMethod >= 0 % We are using a fixed noise threshold

 T = noiseMethod; % use supplied noiseMethod value as the threshold

 else

 % Estimate the effect of noise on the sum of the filter responses as

 % the sum of estimated individual responses (this is a simplistic

 % overestimate). As the estimated noise response at succesive scales

 % is scaled inversely proportional to bandwidth we have a simple

 % geometric sum.

 totalTau = tau * (1 - (1/mult)^nscale)/(1-(1/mult));

 % Calculate mean and std dev from tau using fixed relationship

 % between these parameters and tau. See

 % http://mathworld.wolfram.com/RayleighDistribution.html

 EstNoiseEnergyMean = totalTau*sqrt(pi/2); % Expected mean and

std

 EstNoiseEnergySigma = totalTau*sqrt((4-pi)/2); % values of noise

energy

 T = EstNoiseEnergyMean + k*EstNoiseEnergySigma; % Noise threshold

 end

 %------ Final computation of key quantities -------

 or = atan(-sumh2./sumh1); % Orientation - this varies +/- pi/2

 or(or<0) = or(or<0)+pi; % Add pi to -ve orientation value so that all

 % orientation values now range 0 - pi

 or = fix(or/pi*180); % Quantize to 0 - 180 degrees (for NONMAXSUP)

 ft = atan2(sumf,sqrt(sumh1.^2+sumh2.^2)); % Feature type - a phase angle

 % -pi/2 to pi/2.

EG Video Interpretability and Quality Measurement and Prediction 33

 energy = sqrt(sumf.^2 + sumh1.^2 + sumh2.^2) + epsilon; % Overall

energy

 % Compute phase congruency. The original measure,

 % PC = energy/sumAn

 % is proportional to the weighted cos(phasedeviation). This is not very

 % localised so this was modified to

 % PC = cos(phasedeviation) - |sin(phasedeviation)|

 % (Note this was actually calculated via dot and cross products.) This

measure

 % approximates

 % PC = 1 - phasedeviation.

 % However, rather than use dot and cross products it is simpler and more

 % efficient to simply use acos(energy/sumAn) to obtain the weighted phase

 % deviation directly. Note, in the expression below the noise threshold

is

 % not subtracted from energy immediately as this would interfere with the

 % phase deviation computation. Instead it is subtracted after this

 % computation, hence the separate division by sumAn. Finally this result

is

 % floored at 0, and then weighted for frequency spread.

 PC = weight.*max(1 - acos(energy./(sumAn + epsilon)) -

T./(sumAn+epsilon), 0);

%--

% CHECKARGS

%

% Function to process the arguments that have been supplied, assign

% default values as needed and perform basic checks.

function [im, nscale, minWaveLength, mult, sigmaOnf, ...

 k, noiseMethod, cutOff, g] = checkargs(arg)

 nargs = length(arg);

 if nargs < 1

 error('No image supplied as an argument');

 end

 % Set up default values for all arguments and then overwrite them

 % with with any new values that may be supplied

 im = [];

 nscale = 5; % Number of wavelet scales.

 minWaveLength = 3; % Wavelength of smallest scale filter.

 mult = 2.1; % Scaling factor between successive filters.

 sigmaOnf = 0.65; % Ratio of the standard deviation of the

 % Gaussian describing the log Gabor filter's

 % transfer function in the frequency domain

EG Video Interpretability and Quality Measurement and Prediction 34

 % to the filter center frequency.

 k = 2.0; % No of standard deviations of the noise

 % energy beyond the mean at which we set the

 % noise threshold point.

 noiseMethod = -1; % Use the median response of smallest scale

 % filter to estimate noise statistics

 cutOff = 0.5;

 g = 10;

 % Allowed argument reading states

 allnumeric = 1; % Numeric argument values in predefined order

 keywordvalue = 2; % Arguments in the form of string keyword

 % followed by numeric value

 readstate = allnumeric; % Start in the allnumeric state

 if readstate == allnumeric

 for n = 1:nargs

 if isa(arg{n},'char')

 readstate = keywordvalue;

 break;

 else

 if n == 1, im = arg{n};

 elseif n == 2, nscale = arg{n};

 elseif n == 3, minWaveLength = arg{n};

 elseif n == 4, mult = arg{n};

 elseif n == 5, sigmaOnf = arg{n};

 elseif n == 6, k = arg{n};

 elseif n == 7, noiseMethod = arg{n};

 elseif n == 8, cutOff = arg{n};

 elseif n == 9, g = arg{n};

 end

 end

 end

 end

 % Code to handle parameter name - value pairs

 if readstate == keywordvalue

 while n < nargs

 if ~isa(arg{n},'char') || ~isa(arg{n+1}, 'double')

 error('There should be a parameter name - value pair');

 end

 if strncmpi(arg{n},'im' ,2), im =

arg{n+1};

 elseif strncmpi(arg{n},'nscale' ,2), nscale =

arg{n+1};

EG Video Interpretability and Quality Measurement and Prediction 35

 elseif strncmpi(arg{n},'minWaveLength',2), minWaveLength =

arg{n+1};

 elseif strncmpi(arg{n},'mult' ,2), mult =

arg{n+1};

 elseif strncmpi(arg{n},'sigmaOnf',2), sigmaOnf =

arg{n+1};

 elseif strncmpi(arg{n},'k' ,1), k =

arg{n+1};

 elseif strncmpi(arg{n},'noisemethod',3), noiseMethod =

arg{n+1};

 elseif strncmpi(arg{n},'cutOff' ,2), cutOff =

arg{n+1};

 elseif strncmpi(arg{n},'g' ,1), g =

arg{n+1};

 else error('Unrecognised parameter name');

 end

 n = n+2;

 if n == nargs

 error('Unmatched parameter name - value pair');

 end

 end

 end

 if isempty(im)

 error('No image argument supplied');

 end

 if ~isa(im, 'double')

 im = double(im);

 end

 if nscale < 1

 error('nscale must be an integer >= 1');

 end

 if minWaveLength < 2

 error('It makes little sense to have a wavelength < 2');

 end

%---

% RAYLEIGHMODE

%

% Computes mode of a vector/matrix of data that is assumed to come from a

% Rayleigh distribution.

%

% Usage: rmode = rayleighmode(data, nbins)

%

EG Video Interpretability and Quality Measurement and Prediction 36

% Arguments: data - data assumed to come from a Rayleigh distribution

% nbins - Optional number of bins to use when forming histogram

% of the data to determine the mode.

%

% Mode is computed by forming a histogram of the data over 50 bins and then

% finding the maximum value in the histogram. Mean and standard deviation

% can then be calculated from the mode as they are related by fixed

% constants.

%

% mean = mode * sqrt(pi/2)

% std dev = mode * sqrt((4-pi)/2)

%

% See

% http://mathworld.wolfram.com/RayleighDistribution.html

% http://en.wikipedia.org/wiki/Rayleigh_distribution

%

8.2. function rmode = rayleighmode(data, nbins)

 if nargin == 1

 nbins = 50; % Default number of histogram bins to use

 end

 mx = max(data(:));

 edges = 0:mx/nbins:mx;

 n = histc(data(:),edges);

 [dum,ind] = max(n); % Find maximum and index of maximum in histogram

 rmode = (edges(ind)+edges(ind+1))/2;

8.3. function noisevar = evar(y)

%EVAR Noise variance estimation.

% Assuming that the deterministic function Y has additive Gaussian noise,

% EVAR(Y) returns an estimated variance of this noise.

%

% Note:

% ----

% A thin-plate smoothing spline model is used to smooth Y. It is assumed

% that the model whose generalized cross-validation score is minimum can

% provide the variance of the additive noise. A few tests showed that

% EVAR works very well with "not too irregular" functions.

%

% Examples:

% --------

% % 1D signal

% n = 1e6; x = linspace(0,100,n);

EG Video Interpretability and Quality Measurement and Prediction 37

% y = cos(x/10)+(x/50);

% var0 = 0.02; % noise variance

% yn = y + sqrt(var0)*randn(size(y));

% evar(yn) % estimated variance

%

% % 2D function

% [xp,yp] = deal(0:.02:1);

% [x,y] = meshgrid(xp,yp);

% f = exp(x+y) + sin((x-2*y)*3);

% var0 = 0.04; % noise variance

% fn = f + sqrt(var0)*randn(size(f));

% evar(fn) % estimated variance

%

% % 3D function

% [x,y,z] = meshgrid(-2:.2:2,-2:.2:2,-2:.2:2);

% f = x.*exp(-x.^2-y.^2-z.^2);

% var0 = 0.5; % noise variance

% fn = f + sqrt(var0)*randn(size(f));

% evar(fn) % estimated variance

%

% % Other examples

% Click here for

more examples

%

% Note:

% ----

% EVAR is only adapted to evenly-gridded 1-D to N-D data.

%

% See also VAR, STD, SMOOTHN

%

% -- Damien Garcia -- 2008/04, revised 2009/10

error(nargchk(1,1,nargin));

d = ndims(y);

siz = size(y);

S = zeros(siz);

for i = 1:d

 siz0 = ones(1,d);

 siz0(i) = siz(i);

 S = bsxfun(@plus,S,cos(pi*(reshape(1:siz(i),siz0)-1)/siz(i)));

end

S = 2*(d-S);

% N-D Discrete Cosine Transform of Y

if exist('dctn','file')

 DCTy = dctn(y);

else

EG Video Interpretability and Quality Measurement and Prediction 38

 error('MATLAB:evar:MissingFunction',...

 ['DCTN is required. Download <a href="matlab:web(''',...

 'http://www.biomecardio.com/matlab/dctn.html'')">DCTN.'])

end

fminbnd(@func,-38,38);

8.4. function score = func(L)
 % Generalized cross validation score

 M = 1-1./(1+10^L*S.^2);

 noisevar = mean(DCTy(:).^2.*M(:).^2);

 score = noisevar/mean(M(:))^2;

end

end

8.5. function [y,w] = dctn(y,w)

%DCTN N-D discrete cosine transform.
% Y = DCTN(X) returns the discrete cosine transform of X. The array Y is
% the same size as X and contains the discrete cosine transform
% coefficients. This transform can be inverted using IDCTN.
%
% Class Support
% -------------
% Input array can be numeric or logical. The returned array is of class
% double.
%
% Reference
% ---------
% Narasimha M. et al, On the computation of the discrete cosine
% transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936.
%
% Example
% -------
% RGB = imread('autumn.tif');
% I = rgb2gray(RGB);
% J = dctn(I);
% imshow(log(abs(J)),[]), colormap(jet), colorbar
%
% The commands below set values less than magnitude 10 in the DCT matrix
% to zero, then reconstruct the image using the inverse DCT.
%
% J(abs(J)<10) = 0;
% K = idctn(J);
% figure, imshow(I)
% figure, imshow(K,[0 255])
%
% See also IDCTN, DCT, DCT2.
%
% -- Damien Garcia -- 2008/06, revised 2009/11

EG Video Interpretability and Quality Measurement and Prediction 39

% ----------
% [Y,W] = DCTN(X,W) uses and returns the weights which are used by the
% program. If DCTN is required for several large arrays of same size, the
% weights can be reused to make the algorithm faster. A typical syntax is
% the following:
% w = [];
% for k = 1:10
% [y{k},w] = dctn(x{k},w);
% end
% The weights (w) are calculated during the first call of DCTN then
% reused in the next calls.
% ----------

error(nargchk(1,2,nargin))

y = double(y);
sizy = size(y);
y = squeeze(y);

dimy = ndims(y);
if isvector(y)
 dimy = 1;
 y = y(:);
end

if ~exist('w','var') || isempty(w)
 for dim = 1:dimy
 n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim);
 w{dim} = exp(1i*(0:n-1)'*pi/2/n);
 end
end

if ~isreal(y)
 y = complex(dctn(real(y),w),dctn(imag(y),w));
else
 for dim = 1:dimy
 siz = size(y);
 n = siz(1);
 y = y([1:2:n 2*floor(n/2):-2:2],:);
 y = reshape(y,n,[]);
 y = y*sqrt(2*n);
 y = ifft(y,[],1);
 y = bsxfun(@times,y,w{dim});
 y = real(y);
 y(1,:) = y(1,:)/sqrt(2);
 y = reshape(y,siz);
 y = shiftdim(y,1);
 end
end

y = reshape(y,sizy);

EG Video Interpretability and Quality Measurement and Prediction 40

8.6. function blur = blurMetric(original)
% original : entry image

% The idea is from "The Blur Effect: Perception and Estimation with a New No-

Reference Perceptual Blur Metric"

% Crété-Roffet F., Dolmiere T., Ladret P., Nicolas M. - GRENOBLE - 2007

% In SPIE proceedings - SPIE Electronic Imaging Symposium Conf Human Vision

and Electronic Imaging, États-Unis d'Amérique (2007)

% Written by DO Quoc Bao, PhD Student in L2TI Laboratory, Paris 13

University, France

% Email: doquocbao@gmail.com, do.quocbao@l2ti.univ-paris13.fr

% Last changed: 21-09-2008

%%%%%%%%%%%%%%%%%%Note: the output (blur) is in [0,1]; 0 means sharp, 1 means

blur%%%%%%%%%%%%%%%%%%

%%%

% Please cite the author when you use this code. All remarks are welcome. %

%%%

I = double(original);

[y x] = size(I);

Hv = [1 1 1 1 1 1 1 1 1]/9;

Hh = Hv';

B_Ver = imfilter(I,Hv);%blur the input image in vertical direction

B_Hor = imfilter(I,Hh);%blur the input image in horizontal direction

D_F_Ver = abs(I(:,1:x-1) - I(:,2:x));%variation of the input image (vertical

direction)

D_F_Hor = abs(I(1:y-1,:) - I(2:y,:));%variation of the input image

(horizontal direction)

D_B_Ver = abs(B_Ver(:,1:x-1)-B_Ver(:,2:x));%variation of the blured image

(vertical direction)

D_B_Hor = abs(B_Hor(1:y-1,:)-B_Hor(2:y,:));%variation of the blured image

(horizontal direction)

T_Ver = D_F_Ver - D_B_Ver;%difference between two vertical variations of 2

image (input and blured)

T_Hor = D_F_Hor - D_B_Hor;%difference between two horizontal variations of 2

image (input and blured)

V_Ver = max(0,T_Ver);

V_Hor = max(0,T_Hor);

EG Video Interpretability and Quality Measurement and Prediction 41

S_D_Ver = sum(sum(D_F_Ver(2:y-1,2:x-1)));

S_D_Hor = sum(sum(D_F_Hor(2:y-1,2:x-1)));

S_V_Ver = sum(sum(V_Ver(2:y-1,2:x-1)));

S_V_Hor = sum(sum(V_Hor(2:y-1,2:x-1)));

blur_F_Ver = (S_D_Ver-S_V_Ver)/S_D_Ver;

blur_F_Hor = (S_D_Hor-S_V_Hor)/S_D_Hor;

blur = max(blur_F_Ver,blur_F_Hor);

8.7. function fr=frequency_ratio(img,Nsub,fcut)
%img input image

%Nsub size of sub region around center point, should be pow of 2

%fcut is the lowpass frequency cutoff

% Get the size of img

[r c k] = size(img);

rcenter=round(r/2);

ccenter=round(c/2);

%extract sub region and convert to intensity

simg=(img(round(rcenter-Nsub/2:rcenter+Nsub/2-1),round(ccenter-

Nsub/2:ccenter+Nsub/2-1),:));

%compute fft of subimage

simgF=fftshift(fft2(simg));

FM=real(simgF.*conj(simgF));

%subselect low frequency part

fcuti=round(fcut*Nsub);

lpass=sum(sum(FM(Nsub/2-fcuti:Nsub/2+fcuti-1,Nsub/2-fcuti:Nsub/2+fcuti-1)));

sall=sum(sum(FM));

hpass=sall-lpass;

fr=hpass/lpass;

%%keyboard

edge_intensity.m

function outval = edge_intensity(img)

% OUTVAL = EDGE_INTENSITY(IMG)

if nargin == 1

 img = double(img);

 % Create horizontal sobel matrix

 w = fspecial('sobel');

EG Video Interpretability and Quality Measurement and Prediction 42

 % Get the size of img

 [r c k] = size(img);

 gx = imfilter(img,w,'replicate');

 gy = imfilter(img,w','replicate');

 for m = 1 : r

 for n = 1 : c

 for q = 1 : k

 g(m,n,q) = sqrt(gx(m,n,q)*gx(m,n,q) + gy(m,n,q)*gy(m,n,q));

 end

 end

 end

 outval = mean(mean(mean(g)));

else

 error('Wrong number of input!');

end

8.8. function [mssim, ssim_map] = ssim(img1, img2, K, window, L)

% ==

% SSIM Index with automatic downsampling, Version 1.0

% Copyright(c) 2009 Zhou Wang

% All Rights Reserved.

%

% --

% Permission to use, copy, or modify this software and its documentation

% for educational and research purposes only and without fee is hereby

% granted, provided that this copyright notice and the original authors'

% names appear on all copies and supporting documentation. This program

% shall not be used, rewritten, or adapted as the basis of a commercial

% software or hardware product without first obtaining permission of the

% authors. The authors make no representations about the suitability of

% this software for any purpose. It is provided "as is" without express

% or implied warranty.

%--

%

% This is an implementation of the algorithm for calculating the

% Structural SIMilarity (SSIM) index between two images

%

% Please refer to the following paper and the website with suggested usage

%

% Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image

% quality assessment: From error visibility to structural similarity,"

% IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612,

% Apr. 2004.

%

% http://www.ece.uwaterloo.ca/~z70wang/research/ssim/

EG Video Interpretability and Quality Measurement and Prediction 43

%

% Note: This program is different from ssim_index.m, where no automatic

% downsampling is performed. (downsampling was done in the above paper

% and was described as suggested usage in the above website.)

%

% Kindly report any suggestions or corrections to zhouwang@ieee.org

%

%--

%

%Input : (1) img1: the first image being compared

% (2) img2: the second image being compared

% (3) K: constants in the SSIM index formula (see the above

% reference). defualt value: K = [0.01 0.03]

% (4) window: local window for statistics (see the above

% reference). default widnow is Gaussian given by

% window = fspecial('gaussian', 11, 1.5);

% (5) L: dynamic range of the images. default: L = 255

%

%Output: (1) mssim: the mean SSIM index value between 2 images.

% If one of the images being compared is regarded as

% perfect quality, then mssim can be considered as the

% quality measure of the other image.

% If img1 = img2, then mssim = 1.

% (2) ssim_map: the SSIM index map of the test image. The map

% has a smaller size than the input images. The actual size

% depends on the window size and the downsampling factor.

%

%Basic Usage:

% Given 2 test images img1 and img2, whose dynamic range is 0-255

%

% [mssim, ssim_map] = ssim(img1, img2);

%

%Advanced Usage:

% User defined parameters. For example

%

% K = [0.05 0.05];

% window = ones(8);

% L = 100;

% [mssim, ssim_map] = ssim(img1, img2, K, window, L);

%

%Visualize the results:

%

% mssim %Gives the mssim value

% imshow(max(0, ssim_map).^4) %Shows the SSIM index map

%==

if (nargin < 2 || nargin > 5)

 mssim = -Inf;

EG Video Interpretability and Quality Measurement and Prediction 44

 ssim_map = -Inf;

 return;

end

if (size(img1) ~= size(img2))

 mssim = -Inf;

 ssim_map = -Inf;

 return;

end

[M N] = size(img1);

if (nargin == 2)

 if ((M < 11) || (N < 11))

 mssim = -Inf;

 ssim_map = -Inf;

 return

 end

 window = fspecial('gaussian', 11, 1.5); %

 K(1) = 0.01; % default settings

 K(2) = 0.03; %

 L = 255; %

end

if (nargin == 3)

 if ((M < 11) || (N < 11))

 mssim = -Inf;

 ssim_map = -Inf;

 return

 end

 window = fspecial('gaussian', 11, 1.5);

 L = 255;

 if (length(K) == 2)

 if (K(1) < 0 || K(2) < 0)

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

 else

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

end

if (nargin == 4)

 [H W] = size(window);

 if ((H*W) < 4 || (H > M) || (W > N))

 mssim = -Inf;

EG Video Interpretability and Quality Measurement and Prediction 45

 ssim_map = -Inf;

 return

 end

 L = 255;

 if (length(K) == 2)

 if (K(1) < 0 || K(2) < 0)

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

 else

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

end

if (nargin == 5)

 [H W] = size(window);

 if ((H*W) < 4 || (H > M) || (W > N))

 mssim = -Inf;

 ssim_map = -Inf;

 return

 end

 if (length(K) == 2)

 if (K(1) < 0 || K(2) < 0)

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

 else

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

end

img1 = double(img1);

img2 = double(img2);

% automatic downsampling

f = max(1,round(min(M,N)/256));

%downsampling by f

%use a simple low-pass filter

if(f>1)

 lpf = ones(f,f);

 lpf = lpf/sum(lpf(:));

 img1 = imfilter(img1,lpf,'symmetric','same');

EG Video Interpretability and Quality Measurement and Prediction 46

 img2 = imfilter(img2,lpf,'symmetric','same');

 img1 = img1(1:f:end,1:f:end);

 img2 = img2(1:f:end,1:f:end);

end

C1 = (K(1)*L)^2;

C2 = (K(2)*L)^2;

window = window/sum(sum(window));

mu1 = filter2(window, img1, 'valid');

mu2 = filter2(window, img2, 'valid');

mu1_sq = mu1.*mu1;

mu2_sq = mu2.*mu2;

mu1_mu2 = mu1.*mu2;

sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;

sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;

sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 && C2 > 0)

 ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq +

C1).*(sigma1_sq + sigma2_sq + C2));

else

 numerator1 = 2*mu1_mu2 + C1;

 numerator2 = 2*sigma12 + C2;

 denominator1 = mu1_sq + mu2_sq + C1;

 denominator2 = sigma1_sq + sigma2_sq + C2;

 ssim_map = ones(size(mu1));

 index = (denominator1.*denominator2 > 0);

 ssim_map(index) =

(numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(in

dex));

 index = (denominator1 ~= 0) & (denominator2 == 0);

 ssim_map(index) = numerator1(index)./denominator1(index);

end

mssim = mean2(ssim_map);

return

8.9. [Acum Tcum iga]=opticalflow(iraw,iraw_old,ones(size(iraw)),1);

 %%% ALIGN TWO FRAMES (f2 to f1)

 function[Acum, Tcum, f2] = opticalflow(f1, f2, roi, L)

 f2orig = f2;

 Acum = [1 0 ; 0 1];

 Tcum = [0 ; 0];

 for k = L : -1 : 0

 %%% DOWN-SAMPLE

EG Video Interpretability and Quality Measurement and Prediction 47

 f1d = down(f1, k);

 f2d = down(f2, k);

 ROI = down(roi, k);

 %%% COMPUTE MOTION

 [Fx,Fy,Ft] = spacetimederiv(f1d, f2d);

 [A,T] = computemotion(Fx, Fy, Ft, ROI);

 %if length(find(isnan(A)))>0

 %keyboard

 % idx=find(isnan(A));

 % A(idx)=0;

 %end;

 T = (2^k) * T;

 [Acum,Tcum] = accumulatewarp(Acum, Tcum, A, T);

 %%% WARP ACCORDING TO ESTIMATED MOTION

 f2 = warpim(f2orig, Acum, Tcum);

 end

 %%% COMPUTE MOTION

8.10. function[A, T] = computemotion(fx, fy, ft, roi)
[ydim,xdim] = size(fx);

[x,y] = meshgrid([1:xdim]-xdim/2, [1:ydim]-ydim/2);

%%% TRIM EDGES

fx = fx(3:end-2, 3:end-2);

fy = fy(3:end-2, 3:end-2);

ft = ft(3:end-2, 3:end-2);

roi = roi(3:end-2, 3:end-2);

x = x(3:end-2, 3:end-2);

y = y(3:end-2, 3:end-2);

ind = find(roi > 0);

x = x(ind); y = y(ind);

fx = fx(ind); fy = fy(ind); ft = ft(ind);

xfx = x.*fx; xfy = x.*fy; yfx = y.*fx; yfy = y.*fy;

M(1,1) = sum(xfx .* xfx); M(1,2) = sum(xfx .* yfx); M(1,3) = sum(xfx .* xfy);

M(1,4) = sum(xfx .* yfy); M(1,5) = sum(xfx .* fx); M(1,6) = sum(xfx .* fy);

M(2,1) = M(1,2); M(2,2) = sum(yfx .* yfx); M(2,3) = sum(yfx .* xfy);

M(2,4) = sum(yfx .* yfy); M(2,5) = sum(yfx .* fx); M(2,6) = sum(yfx .* fy);

M(3,1) = M(1,3); M(3,2) = M(2,3); M(3,3) = sum(xfy .* xfy);

M(3,4) = sum(xfy .* yfy); M(3,5) = sum(xfy .* fx); M(3,6) = sum(xfy .* fy);

M(4,1) = M(1,4); M(4,2) = M(2,4); M(4,3) = M(3,4);

M(4,4) = sum(yfy .* yfy); M(4,5) = sum(yfy .* fx); M(4,6) = sum(yfy .* fy);

M(5,1) = M(1,5); M(5,2) = M(2,5); M(5,3) = M(3,5);

M(5,4) = M(4,5); M(5,5) = sum(fx .* fx); M(5,6) = sum(fx .* fy);

M(6,1) = M(1,6); M(6,2) = M(2,6); M(6,3) = M(3,6);

M(6,4) = M(4,6); M(6,5) = M(5,6); M(6,6) = sum(fy .* fy);

k = ft + xfx + yfy;

b(1) = sum(k .* xfx); b(2) = sum(k .* yfx);

b(3) = sum(k .* xfy); b(4) = sum(k .* yfy);

b(5) = sum(k .* fx); b(6) = sum(k .* fy);

v = inv(M) * b';

A = [v(1) v(2) ; v(3) v(4)];

T = [v(5) ; v(6)];

EG Video Interpretability and Quality Measurement and Prediction 48

%%% ACCUMULATE WARPS

8.11. function[A2, T2] = accumulatewarp(Acum, Tcum, A, T)
A2 = A * Acum;

T2 = A*Tcum + T;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8.12. Vertical blocking detector code:
macroAngle=0; %to detect vertical lines

e=edge(iraw,.005); %extract edges

se = strel('line',7,macroAngle);

er=imerode(e,se); %throw away horizontal lines

ers=sum(er); %sum columns

ibuf=[ibuf ers]; %store in rolling buffer

if length(ibuf)>8192

 ibuf=ibuf(length(ers)+1:length(ibuf));

 %keyboard

 N=length(ibuf);

 pxx=pwelch(ibuf,ones(1,2048)/2048); %compute spectrum

 pxxd=detrend(10*log10(pxx));

 Np=length(pxxd);

 ibin=round(2*Np/16)+1;

 idx=ibin;

 mbe=(sum(pxxd(idx)))/length(idx); %macroblock energy

 idx1=round(ibin+.04*Np):round(ibin+.05*Np);

 fe=sum(pxxd(idx1))/length(idx1); %floor energy

 rv=(mbe-(fe));% difference in log = ratio

end;

8.13. Horizontal blocking detector code:
macroAngle=90; %to detect horizontal lines

se = strel('line',7,macroAngle);

e=edge(iraw,.005); %compute edges

er=imerode(e,se); %throw away vertical lines

ers2=sum(er'); %sum rows

ibuf2=[ibuf2 ers]; %store in rolling buffer

 if length(ibuf2)>8192

 ibuf2=ibuf2(length(ers)+1:length(ibuf2));

 %keyboard

 N=length(ibuf2);

 pxx=pwelch(ibuf2,ones(1,2048)/2048); %compute spectrum

 pxxd=detrend(10*log10(pxx));

 Np=length(pxxd);

EG Video Interpretability and Quality Measurement and Prediction 49

 ibin=round(2*Np/16)+1;

 idx=ibin;

 mbe=(sum(pxxd(idx)))/length(idx); %macro block energy

 idx1=round(ibin+.04*Np):round(ibin+.05*Np);

 fe=sum(pxxd(idx1))/length(idx1); %average floor energy

 rh=(mbe-(fe)); %differenc in log = ratio

end;

8.14. function RER=perceptual_RER(iraw)
%function RER=perceptual_RER(iraw)

%function takes input an intensity image

%and computes the Relative Edge Response

% estimate of the slope

%of the line spread function.

%estimate RER on original image

r1=RERpoly(iraw);

%downsample and repeat

r2=RERpoly(blur(iraw,1));

%use ratio to make non-linear adjustment

r=r1/r2;

RER=(r1*(2/r)^3).^(2/r);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function rer=RERpoly(iraw)

PSF = fspecial('gaussian',10,10); %define a blurring function

iraw2=imfilter(iraw,PSF,'conv'); %smooth the input image

icon=phasecongmono(iraw2);% compute phase congruency image

se=strel('square',3); %parameter for erode

iconc=imerode(icon,se); %reduce false hits

icond=imdilate(iconc,se); %re-enlarge

i2=iraw(1:size(icond,1),1:size(icond,2)); %select original pixels

ym=icond.*double(i2); %convert to double

ymz=sort(ym(:)); %sort intensities

idx=find(ymz); %find non-zero entries

ymzz=ymz(idx); % select non-zero entries

idx=find(ymzz~=255); %remove repeating entries

EG Video Interpretability and Quality Measurement and Prediction 50

yms=ymzz(idx); %select non-repeating limit entries

[ymin xmini]=min(yms); %find min and location

[ymax xmaxi]=max(yms); %find max and location

xwi=xmaxi-xmini; %calculate width

xci=xmini+round(xwi/2); %calculate center

ib=xci-round(xwi/4); %select interval for linear fit

ie=xci+round(xwi/4); %

p=polyfit(ib:ie,yms(ib:ie)',1); %perform fit

rer=p(1)*length(ib:ie)/2.5; % estimate RER

8.15. % RES = blur(IM, LEVELS, FILT)
%

% Blur an image, by filtering and downsampling LEVELS times

% (default=1), followed by upsampling and filtering LEVELS times. The

% blurring is done with filter kernel specified by FILT (default =

% 'binom5'), which can be a string (to be passed to namedFilter), a

% vector (applied separably as a 1D convolution kernel in X and Y), or

% a matrix (applied as a 2D convolution kernel). The downsampling is

% always by 2 in each direction.

% Eero Simoncelli, 3/04.

function res = blur(im, nlevs, filt)

%--

%% OPTIONAL ARGS:

if (exist('nlevs') ~= 1)

 nlevs = 1;

end

if (exist('filt') ~= 1)

 filt = 'binom5';

end

%--

if isstr(filt)

 filt = namedFilter(filt);

end

filt = filt/sum(filt(:));

if nlevs > 0

 if (any(size(im)==1))

 if (~any(size(filt)==1))

 error('Cant apply 2D filter to 1D signal');

 end

EG Video Interpretability and Quality Measurement and Prediction 51

 if (size(im,2)==1)

 filt = filt(:);

 else

 filt = filt(:)';

 end

 in = corrDn(im,filt,'reflect1',(size(im)~=1)+1);

 out = blur(in, nlevs-1, filt);

 res = upConv(out, filt, 'reflect1', (size(im)~=1)+1, [1 1], size(im));

 elseif (any(size(filt)==1))

 filt = filt(:);

 in = corrDn(im,filt,'reflect1',[2 1]);

 in = corrDn(in,filt','reflect1',[1 2]);

 out = blur(in, nlevs-1, filt);

 res = upConv(out, filt', 'reflect1', [1 2], [1 1],

[size(out,1),size(im,2)]);

 res = upConv(res, filt, 'reflect1', [2 1], [1 1], size(im));

 else

 in = corrDn(im,filt,'reflect1',[2 2]);

 out = blur(in, nlevs-1, filt);

 res = upConv(out, filt, 'reflect1', [2 2], [1 1], size(im));

 end

else

 res = im;

end

8.16. % RES = upConv(IM, FILT, EDGES, STEP, START, STOP, RES)
%

% Upsample matrix IM, followed by convolution with matrix FILT. These

% arguments should be 1D or 2D matrices, and IM must be larger (in

% both dimensions) than FILT. The origin of filt

% is assumed to be floor(size(filt)/2)+1.

%

% EDGES is a string determining boundary handling:

% 'circular' - Circular convolution

% 'reflect1' - Reflect about the edge pixels

% 'reflect2' - Reflect, doubling the edge pixels

% 'repeat' - Repeat the edge pixels

% 'zero' - Assume values of zero outside image boundary

% 'extend' - Reflect and invert

% 'dont-compute' - Zero output when filter overhangs OUTPUT boundaries

%

% Upsampling factors are determined by STEP (optional, default=[1 1]),

EG Video Interpretability and Quality Measurement and Prediction 52

% a 2-vector [y,x].

%

% The window over which the convolution occurs is specfied by START

% (optional, default=[1,1], and STOP (optional, default =

% step .* (size(IM) + floor((start-1)./step))).

%

% RES is an optional result matrix. The convolution result will be

% destructively added into this matrix. If this argument is passed, the

% result matrix will not be returned. DO NOT USE THIS ARGUMENT IF

% YOU DO NOT UNDERSTAND WHAT THIS MEANS!!

%

% NOTE: this operation corresponds to multiplication of a signal

% vector by a matrix whose columns contain copies of the time-reversed

% (or space-reversed) FILT shifted by multiples of STEP. See corrDn.m

% for the operation corresponding to the transpose of this matrix.

% Eero Simoncelli, 6/96. revised 2/97.

function result = upConv(im,filt,edges,step,start,stop,res)

%% THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)

fprintf(1,'WARNING: You should compile the MEX version of "upConv.c",\n

found in the MEX subdirectory of matlabPyrTools, and put it in your matlab

path. It is MUCH faster, and provides more boundary-handling options.\n');

%--

%% OPTIONAL ARGS:

if (exist('edges') == 1)

 if (strcmp(edges,'reflect1') ~= 1)

 warning('Using REFLECT1 edge-handling (use MEX code for other

options).');

 end

end

if (exist('step') ~= 1)

 step = [1,1];

end

if (exist('start') ~= 1)

 start = [1,1];

end

% A multiple of step

if (exist('stop') ~= 1)

 stop = step .* (floor((start-ones(size(start)))./step)+size(im))

end

EG Video Interpretability and Quality Measurement and Prediction 53

if (ceil((stop(1)+1-start(1)) / step(1)) ~= size(im,1))

 error('Bad Y result dimension');

end

if (ceil((stop(2)+1-start(2)) / step(2)) ~= size(im,2))

 error('Bad X result dimension');

end

if (exist('res') ~= 1)

 res = zeros(stop-start+1);

end

%--

tmp = zeros(size(res));

tmp(start(1):step(1):stop(1),start(2):step(2):stop(2)) = im;

result = rconv2(tmp,filt) + res;

8.17. % RES = corrDn(IM, FILT, EDGES, STEP, START, STOP)
%

% Compute correlation of matrices IM with FILT, followed by

% downsampling. These arguments should be 1D or 2D matrices, and IM

% must be larger (in both dimensions) than FILT. The origin of filt

% is assumed to be floor(size(filt)/2)+1.

%

% EDGES is a string determining boundary handling:

% 'circular' - Circular convolution

% 'reflect1' - Reflect about the edge pixels

% 'reflect2' - Reflect, doubling the edge pixels

% 'repeat' - Repeat the edge pixels

% 'zero' - Assume values of zero outside image boundary

% 'extend' - Reflect and invert (continuous values and derivs)

% 'dont-compute' - Zero output when filter overhangs input boundaries

%

% Downsampling factors are determined by STEP (optional, default=[1 1]),

% which should be a 2-vector [y,x].

%

% The window over which the convolution occurs is specfied by START

% (optional, default=[1,1], and STOP (optional, default=size(IM)).

%

% NOTE: this operation corresponds to multiplication of a signal

% vector by a matrix whose rows contain copies of the FILT shifted by

% multiples of STEP. See upConv.m for the operation corresponding to

% the transpose of this matrix.

% Eero Simoncelli, 6/96, revised 2/97.

function res = corrDn(im, filt, edges, step, start, stop)

EG Video Interpretability and Quality Measurement and Prediction 54

%% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)

fprintf(1,'WARNING: You should compile the MEX version of "corrDn.c",\n

found in the MEX subdirectory of matlabPyrTools, and put it in your matlab

path. It is MUCH faster, and provides more boundary-handling options.\n');

%--

%% OPTIONAL ARGS:

if (exist('edges') == 1)

 if (strcmp(edges,'reflect1') ~= 1)

 warning('Using REFLECT1 edge-handling (use MEX code for other

options).');

 end

end

if (exist('step') ~= 1)

 step = [1,1];

end

if (exist('start') ~= 1)

 start = [1,1];

end

if (exist('stop') ~= 1)

 stop = size(im);

end

%--

% Reverse order of taps in filt, to do correlation instead of convolution

filt = filt(size(filt,1):-1:1,size(filt,2):-1:1);

tmp = rconv2(im,filt);

res = tmp(start(1):step(1):stop(1),start(2):step(2):stop(2));

8.18. function

probabilityVector=multinomialLogisticProbability(beta,x)
%returns probabilities for each class

%supports matrix of observations x of size

%n observations by p predictor variables

%beta is matrix of p x (k-1) coefficients (see table)

k = size(beta,2) + 1;

[n,p] = size(x);

pstar = size(beta,1);

EG Video Interpretability and Quality Measurement and Prediction 55

eta = repmat(beta(1,:),n,1) + x*beta(2:pstar,:);

pi = [exp(eta) ones(n,1)];

pi = pi ./ repmat(sum(pi,2),1,k);

probabilityVector=pi;

 %%% SPACE/TIME DERIVATIVES

8.19. function[fx, fy, ft] = spacetimederiv(f1, f2)
 f1=double(f1);
 %%% DERIVATIVE FILTERS
 pre = [0.5 0.5];
 deriv = [0.5 -0.5];
 %%% SPACE/TIME DERIVATIVES
 fpt = pre(1)*f1 + pre(2)*f2; % pre-filter in time
 fdt = deriv(1)*f1 + deriv(2)*f2; % differentiate in

time
 fx = conv2(conv2(fpt, pre', 'same'), deriv, 'same'

);
 fy = conv2(conv2(fpt, pre, 'same'), deriv', 'same'

);
 ft = conv2(conv2(fdt, pre', 'same'), pre, 'same'

);
 % ---

 %%% BLUR AND DOWNSAMPLE (L times)

8.20. function[f] = down(f, L);
 blur = [1 2 1]/4;
 for k = 1 : L
 f = conv2(conv2(f, blur, 'same'), blur', 'same');
 f = f(1:2:end,1:2:end);
 end

EG Video Interpretability and Quality Measurement and Prediction 56

9. Appendix
PSNR Coefficient 1-35

 (from psnrcofs002.csv)

row coeff

1 79.726

2 -911.63

3 -132.44

4 -0.75818

5 1761.3

6 -27.805

7 -0.40457

8 0.026766

9 4.1022

10 -7.1777

11 -0.34222

12 0.19063

13 5876.2

14 6.0383

15 7894.5

16 -397.57

17 -0.44703

18 -1.4141

19 388.48

20 478.93

21 -2.0242

22 -8.7549

23 0.58589

24 -2330.1

25 73.647

26 2.0376

27 -1.467

28 -152.57

29 -43.172

30 0.029247

31 0.83946

32 -25.51

33 0.74037

34 0.001745

35 -0.00336

EG Video Interpretability and Quality Measurement and Prediction 57

PSNR Coefficient 36-67

 (from psnrcofs002.csv)

36 -0.34324

37 -0.27475

38 -0.00644

39 0.003327

40 -146.68

41 1.8708

42 -13.493

43 135.09

44 -537.89

45 -9.9933

46 7.6324

47 -0.17343

48 0.20134

49 10.095

50 11.668

51 0.13275

52 -0.25098

53 0.002964

54 -0.13687

55 -0.06155

56 0.007019

57 0.002278

58 0.3511

59 0.12827

60 -0.00526

61 -0.00522

62 -3.4227

63 0.14968

64 0.2767

65 0.00397

66 0.18427

67 0.006018

