
UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

1

1 Scope

This Engineering Guideline defines a Local Data Set (LDS) that may be used with a Remote Video

Terminal (RVT), lays out the relationship between the RVT LDS and other relevant Standards, and

gives implementation guidance for the RVT LDS.

2 References

This Engineering Guideline references the following documents and standards:

2.1 Normative References

DMA TM8358.1: Datums, Ellipsoids, Grids, and Grid Reference Systems, 20 September 1990.

IEEE POSIX Standard IEEE 1003.

ISO/IEC 1318-1:2000.

MIL-STD-2525B: Common Warfighting Symbology, 1 July 2005.

MISB Standard 0807, 18 September 2008.

MISB Standard 0807.1, 9 December 2008

SMPTE 336M-2007: Data Encoding Protocol Using Key-Length-Value.

SMPTE RP 210.11: KLV Metadata Dictionary.

2.2 Informative References

MISB EG 0104.5: Predator UAV Basic Universal Metadata Set.

MISB Standard 0601.2: UAS Datalink Local Data Set.

MISB Standard 0102.5: Security Metadata Universal and Local Data Sets for Digital Motion Imagery.

MISB RP 0103.1: Timing Reconciliation Universal Metadata Set for Digital Motion Imagery.

MISB Standard 0604: Time Stamping Compressed Motion Imagery.

MISB EG 0806.2

Engineering Guideline

Remote Video Terminal Local Data Set

14 May 2009

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

2

3 Introduction

MISB Standard 0601.2 is proving to be highly successful and is being adopted by a wide range of

users. As is generally the case with a successful standard, new adopters often wish to extend it while

current users wish it to remain stable.

The ROVER (Remotely Operated Video Enhanced Receiver) program is attracted to the functionality

of Standard 0601.2, but requires additional metadata elements unique to its customers’ missions. The

purpose of this Engineering Guideline is to formalize a method of communicating with a Remote

Video Terminal (ROVER or other related programs, such as the One System Remote Video Terminal

(OSRVT)) and create a configuration-managed metadata standard to meet its needs with minimal

impacts to Standard 0601.2 users.

The RVT Local Data Set (LDS) defined in this Engineering Guideline can stand alone as its own local

data set or be embedded within other metadata sets (like Standard 0601.2). This provides the ability

for system designers to produce or receive one, the other, or both metadata standards based upon

program requirements.

4 LDS Packet Structure

Local Data Sets are more bit-efficient than individual keys but allow for a great deal of flexibility in

implementation, allowing users to tailor implementations to their specific and changing needs. This

section describes how to create a Local Data Set in accordance with SMPTE 336M-2007.

Tag 12: Point of Interest LDS #1 L = 16

Universal Key
For an

RVT Local Data Set

Length
Of Value

field

Value
RVT Metadata in Local Data Set Format

Tag 2: Unix Time Stamp D UTC Microseconds L = 8 0x00 11 22 33 44 55 66 77

Tag 8: Version Number L = 1 0x00

Tag 1: CRC-32 L = 4 0x00 11 22 33

A Timestamp is

mandatory .
First item in packet .

Arranging metadata
elements in any order is

valid.

All metadata elements need
not be included in each
Local Data Set packet .

T: BER-OID
Encoded Tag

L: BER
Encoded Length

V: Variable
Length Payload

L: BER
Encoded Length

V: Variable
Length Data

K: 16-bytes

RVT LDS Packet Example

A Checksum is

mandatory .
Last item in packet .

Tag 3: POI #1- POI Longitude L = 4 0x00 11 22 33

Tag 2: POI #1- POI Latitude L = 4 0x00 11 22 33

Tag 1: POI #1- POI Number L = 2 0x00 01

Tag 10: Digital Video Format L = 5 ÒH.264Ó

Tag 9: Video Datarate L = 4 0x00 11 22 33

POI Value

Figure 4-1: Example Local Data Set Packet

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

3

Figure 4-1 shows the general format of how the RVT LDS is configured. It is required that each LDS

packet contain a Unix-based Coordinated Universal Time (UTC) timestamp that represents the time of

birth of the metadata within the LDS packet. A checksum metadata item is also required to be

included in each LDS packet.

Any combination of metadata items can be included in a RVT Local Data Set packet. The items

within the RVT LDS can be arranged in any order except that the Unix-based UTC Time Stamp must

come first and the Checksum must come last.

4.1 Bit and Byte Ordering

All metadata is represented using big-endian (Most Significant Byte (MSB) first) encoding. Bytes are

big-endian bit encoding (most significant bit (msb) first).

4.2 Tag and Length Field Encoding

The LDS metadata item Tag fields are encoded using ASN.1 Basic Encoding Rules (BER) Object

Identification (OID) (a. k. a. “primitive BER”) format. The LDS metadata item Length fields are

encoding using the ASN.1 BER Length format, which allows for either the short or long form

encoding of octets. This length encoding method provides the greatest level of flexibility for variable

length data contained within a KLV packet.

In practice, the majority of metadata items in a LDS packet will use the short form of Length encoding

which requires only a single byte to represent the length. The length of the entire LDS packet,

however, is often represented using the long form of length encoding since the majority of packets

have a payload larger than 127 bytes.

The key for the entire LDS packet is always 16 bytes. The length of a single packet is represented by 2

(or more) bytes whenever the payload portion of the LDS packet is larger than 127 bytes,. Both short

and long form length encoding are discussed in the subsections that follow.

See SMPTE 336M Section 4.2 for further details.

4.2.1 BER Short Form Length Encoding Example

For LDS packets and data elements shorter than 128 bytes, the Length field is encoded using the BER

length short form. Length fields using the short form are represented using a single byte (8 bits).

When the most significant bit in this byte is set to zero, it signals that the short form is being used. The

last seven bits depict the number of bytes that follow the BER encoded length. An example LDS

packet using a short form encoded length is shown below:

Local Data Set Packet

T | L | V

Timestamp

T | L | V

metadata

T | L | V

Checksum
Value

76 bytes of data

Length 0
8 7 6 5 4 3 12

1 0 0 1 1 0 0

Short BER Length

76 byte length

Short Form BER Packet Length Encoding
Short Flag

LDS

16-byte Key

Figure 4-2: Example Short Form Length Encoding

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

4

Although this example depicts the length field of the entire LDS packet, short form BER length

encoding also applies to the Lengths within the LDS packet which are 127 bytes or smaller.

4.2.2 BER Long Form Length Encoding

For LDS packets and data elements longer than 127 bytes, the Length field is encoded using the BER

long form. The long form encodes length fields using multiple bytes. When the most significant bit in

the first byte of the length is set to 1, it signals that the long form is in use. The remaining 7 bits of the

first byte are treated as an integer, which contains the number of bytes following the first in the length

field. That is, the first byte signals the length of the length. The remaining bytes in the length field are

concatenated to form a single unsigned integer, which specifies the length of the payload An example

LDS packet using a long form encoded length is shown in Figure 4-3.

LDS

16-byte Key

Local Data Set Packet

T | L | V

Timestamp

T | L | V

metadata

T | L | V

Checksum
Value

201 bytes of data

Length 1
8 7 6 5 4 3 12

0 0 0 0 0 0 1

Long BER Length

201 byte payload

Long Form BER Packet Length Encoding

1
8 7 6 5 4 3 12

1 0 0 1 0 0 1

Long Flag 1 byte for length

Figure 4-3: Example Long For Length Encoding

Although this example depicts long form BER encoding on the Length field of the entire LDS packet,

long form BER encoding also applies to the Lengths within the LDS packet which are 128 or larger.

4.3 Time Stamping

Every RVT LDS KLV packet is required to include a Unix-based UTC timestamp as a way to

correspond the metadata with a standardized time reference. UTC time is useful to associate metadata

with frames, and for reviewing time-critical events at a later date. This section describes how to

include a timestamp within a Local Data Set packet.

Metadata sources are coordinated to operate on the same standard time, which is typically GPS

derived. The metadata source provides a timestamp for inclusion in a LDS packet and the timestamp

assists the accuracy of synchronizing each frame to its corresponding metadata set.

The mandatory timestamp tag is User Defined Time Stamp – Microseconds Since 1970. The UTC

timestamp (RVT LDS Tag 02) is an 8 byte unsigned integer that represents the number of

microseconds that have elapsed since midnight (00:00:00), January 1, 1970. This date is known as the

UNIX Epoch and is discussed in the IEEE POSIX standard IEEE 1003.1.

4.4 Packet Timestamp

The Packet Timestamp is inserted at the beginning of the value portion of a RVT LDS KLV packet.

The timestamp is represented by RVT LDS Tag 02 (see above) and applies to all metadata in the LDS

packet. This timestamp corresponds to the time of birth of all the data within the LDS packet. This

time can be used to associate the metadata with a particular video frame and be displayed or monitored

appropriately.

An example LDS packet containing a timestamp is show below:

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

5

BER

Length

T | L | V

UTC Time

Local Data Set Packet

T | L | V

metadata

T | L | V

metadata

T | L | V

metadata

T | L | V

Checksum
Value

Timestamp applies to all metadataUTC Time

Packet Timestamp

LDS

16-byte Key

Figure 4-4: Example Packet Timestamp

4.5 Error Detection

To help prevent erroneous metadata from being presented with video, it is required that a 32-bit cyclic

redundancy check (CRC) be included in every RVT Local Data Set instance. The CRC, given by RVT

LDS Tag 01 is the CRC-32 checksum defined in ISO/IEC 13818-1:2000 (MPEG2), and must be

located at the end of each instance of the RVT LDS. The CRC is a running 32-bit sum through the

entire LDS packet starting with the 16 byte Local Data Set key and ending with summing the length

field of the checksum data item.

Note that this CRC-32 differs from the one commonly used in IP applications.

The figure below shows the data range that the CRC is performed over:

BER

Length

T | L | V

Timestamp

T | L | V

metadata

T | L | V

metadata

T | L | V

metadata
T | L | checksumValue

Checksum is computed from the start of the 16-byte key up to and
including the 1-byte length field in the Checksum metadata item.

Checksum Calculation Range

LDS

16-byte Key

Figure 4-5: Example Checksum Computation Range

An example algorithm for calculating the checksum is given in Section 8.

4.6 Key to Tag Mappings

It is required that tags within a Local Data Set map back to valid SMPTE RP 210 (or MISB Standard

0807) keys. When a similar but not identical entry already exists in SMPTE RP210 (or MISB

Standard 0807), a new key should be assigned, preferably as a sub-leaf of the existing entry (i.e.

replacing the first zero byte of the existing key with 01 or the next available number). When it is not

possible to assign a new key, the differences shall be noted in SMPTE RP2009 Groups Register (or the

equivalent MISB Standard 0807) and the entry in RP210 shall be informatively noted as Context-

Dependent.

As an example, the Video Frame Counter Tag is a three-byte integer representation of the Frame Code

Key, which is a 31-character string. There is no loss of information in moving a 3-byte unsigned

integer into a 31-character string.

It is also possible to map multiple Tags back to a single Key (e. g. the E0 – E8 series Tags) because

each instantiation within the LDS carries a unique Tag and is therefore an unambiguous reference.

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

6

5 RVT Local Data Set Conventions

This section defines the RVT Local Data Set (LDS). The tags that are supported in this LDS are

defined and mapped to metadata items in the SMPTE KLV Metadata Dictionary (SMPTE RP-210.11)

or in MISB Standard 0807. The RVT LDS is SMPTE 336M-2007 compliant.

5.1 RVT LDS Universal Keys

The sixteen-byte Universal Key to be used with the RVT LDS is:

RVT Local Data Set

Key (hex): 06 0E 2B 34 02 0B 01 01 0E 01 03 01 02 00 00 00

Release Date: 22 April 2008

Release Version: MISB Standard 0807

Please note that the earlier version of the RVT LDS Universal Key (included here for historical

reference) is not within the MISB Metadata Annex domain and was never registered with SMPTE and,

therefore, should not be used.

The elements of the RVT LDS are defined in Table 6-1. Subordinate data structures for the RVT LDS

are described in section 5.5 with element listings listed in Table 6-2, Table 6-3, and

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

7

Table 6-4.

ROVER Local Data Set (sic)

Key (hex): 06 0E 2B 34 01 01 01 01 0F 4C 33 43 53 57 01 00

Release Date: NOT APPROVED

Release Version: NOT APPROVED; INCLUDED FOR HISTORICAL REFERENCE ONLY

5.2 RVT LDS Tag and Length Formats

Tags for the RVT LDS are BER-OID encoded, and lengths are BER length encoded as indicated by

byte 6 in the 16-byte key in accordance with SMPTE 336M-2007.

Tag numbers listed within this document are all in decimal unless preceded by “0x” or “0b” for

hexadecimal or binary (respectively).

5.3 RVT LDS Required Tags

All standalone instantiations of the RVT LDS shall contain the CRC-32 (RVT LDS Tag 01) and the

UNIX-based UTC Timestamp (RVT LDS Tag 02).

Implementations nesting the RVT LDS within another Local Set can optionally exclude the RVT LDS

CRC-32 and UTC timestamp when the external LDS includes a timestamp and checksum, so long as

the checksum/CRC is more robust than the CRC-32.

5.4 RVT LDS Duplication of Tags

With the exception of the RVT LDS Subordinate Set tags, metadata items within an RVT LDS Packet

cannot be represented multiple times.

For instance, tag 03 representing Platform True Airspeed can only appear once in an RVT LDS packet

whereas tag 12, representing a Point of Interest, can appear multiple times to convey information for

multiple points of interest.

5.5 RVT LDS Subordinate Sets

The RVT LDS makes use of three smaller Local Data Sets. These embedded local sets are:

1. Point of Interest (POI) Local Data Set.

2. Area of Interest (AOI) Local Data Set.

3. User Defined Data Local Data Set.

5.5.1 Point of Interest Local Data Set

Point of Interest Local Data Set

Key (hex): 06 0E 2B 34 02 0B 01 01 0E 01 03 01 0C 00 00 00

Release Date: 31 July 2008

Release Version: MISB Standard 0807

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

8

The elements of the Point of Interest Local Data Set (POI LDS) are defined in Table 6-2.

Note that all instantiations of the POI LDS are required to contain (at a minimum) the POI/AOI

Number (Tag 01), POI Latitude (Tag 02), and POI Longitude (Tag 03). Items with tags 04 through 09

are optional.

No items within a POI LDS packet are allowed to appear multiple times within the same packet.

5.5.2 Area of Interest Local Data Set

Area of Interest Local Data Set

Key (hex): 06 0E 2B 34 02 0B 01 01 0E 01 03 01 0D 00 00 00

Release Date: 31 July 2008

Release Version: MISB Standard 0807

The elements of the Area of Interest Local Data Set (AOI LDS) are defined in Table 6-3.

Note that all instantiations of the AOI LDS are required to contain (at a minimum) the POI/AOI

Number (Item 01), Upper Left Latitude (Item 02), Upper Left Longitude (Item 03), Lower Right

Latitude (Item 04), Lower Right Longitude (Item 05), and Type (Item 06). Items with tags 07 through

09 are optional.

No items within an AOI LDS packet are allowed to appear multiple times within the same packet.

5.5.3 User Defined Data Local Data Set

User Defined Data Local Data Set

Key (Hex): 06 0E 2B 34 02 0B 01 01 0E 01 03 01 0F 00 00 00

Release Date: 9 December 2008

Release Version: MISB Standard 0807.1

The elements of the User Defined Data Local Data Set are defined in

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

9

Table 6-4.

The data items contained in the User Defined Data LDS can only be mapped to SMPTE Experimental

(Class 15) keys and cannot be mapped to specific SMPTE RP 210 or MISB Standard 0807 Keys. The

keys provided in this document solely for the sake of completeness. All instances of the User Defined

LDS must contain as their first element the Numeric ID for Data Type (Item 1) and User Data (Item 2)

as their second element.

No other elements can be included in a User Defined Data LDS.

No items within the User Defined Data LDS packet are allowed to appear multiple times within the

same packet.

5.5.4 Subordinate Set Example

Figure 5-1 depicts an example RVT LDS packet containing two Point of Interest LDS packets.

Tag 7: POI #2- POI Source Icon L = 5 “2525B”

Tag 12: Point of Interest LDS #2 L = 21

Tag 3: POI #2- POI Longitude L = 4 0x11 22 33 44

Tag 2: POI #2- POI Latitude L = 4 0x11 22 33 44

Tag 1: POI #2- POI Number L = 2 0x00 02

POI Value

Tag 12: Point of Interest LDS #1 L = 16

Universal Key
For an

RVT Local Data Set

Length
Of Value

field

Value
RVT Metadata in Local Data Set Format

Tag 2: User Defined Time Stamp

(UTC Microseconds)
L = 8 0x00 11 22 33 44 55 66 77

Tag 1: CRC-32 L = 4 0x00 11 22 33

A Timestamp is

mandatory .
First item in packet .

T: BER-OID
Encoded Tag

L: BER
Encoded Length

V: Variable
Length Payload

L: BER
Encoded Length

V: Variable
Length Data

K: 16-bytes

RVT LDS Subordinate Set Packet Example

A Checksum is
mandatory .

Last item in packet .

Tag 3: POI #1- POI Longitude L = 4 0x00 11 22 33

Tag 2: POI #1- POI Latitude L = 4 0x00 11 22 33

Tag 1: POI #1- POI Number L = 2 0x00 01

POI Value

Figure 5-1: Example RVT Subordinate Set Packet

Note how both POI LDS packets contain all mandatory items, and POI 2 adds information for MIL-

STD-2525B symbology. Also note that the RVT LDS packet contains the mandatory timestamp and

checksum metadata items.

The other Subordinate Sets closely mimic the RVT LDS packet structure shown in Figure 5-1

according to the guidelines portrayed in section 5.5.

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

10

6 RVT Local Data Set Tables

Table 6-1: RVT Local Data Set

RVT LDS

Key Value (hex) Key Name Units Format
Length
in Bytes

Notes

06 0E 2B 34 02 0B 01 01

0E 01 03 01 02 00 00 00
RVT KLV Dictionary None N/A Variable This is the Universal Key for the RVT LDS

Tag
ID

Key Value (hex) Key Name Units Format
Length
in Bytes

Notes

1
06 0E 2B 34 01 01 01 01

0E 01 02 03 10 00 00 00
CRC 32 None uint32 4

The checksum is per the CRC-32-ISO/IEC 13818-
1:2000. Performed on entire LDS packet, including
16-byte UDS key. Note: This is Not the same
Checksum as is used in STANDARD 0601. This
checksum must appear as that last item in an RVT
LDS pack when used.

2
06 0E 2B 34 01 01 01 03

07 02 01 01 01 05 00 00

User Defined Time Stamp -
Microseconds Since 1970

Micro-
seconds

uint64 8

Represents the Coordinated Universal Time (UTC)
in Microseconds elapsed since midnight (00:00:00),
January 1, 1970 (the UNIX Epoch). Derived from
the POSIX IEEE1003.1 standard. Resolution: 1
microsecond.
Note: This timestamp must appear as the first item
in an RVT LDS pack when used.

3
06 0E 2B 34 01 01 01 01

0E 01 01 01 0A 00 00 00

Platform True Airspeed
Meters /
Second

uint16 2
True airspeed (TAS) of platform. Indicated Airspeed
adjusted for temperature and altitude. 1 m/s =
1.94384449 knots. Resolution: 1 meter/second.

4
06 0E 2B 34 01 01 01 01

0E 01 01 01 0B 00 00 00
Platform Indicated Airspeed

Meters /
Second

uint16 2
Indicated airspeed (IAS) of platform. Derived from
Pitot tube and static pressure sensors. 1 m/s =
1.94384449 knots. Resolution: 1 meter/second.

5
06 0E 2B 34 01 01 01 01

0E 01 01 03 14 00 00 00

Telemetry Accuracy
Indicator

None uint8 1 Reserved for future use

6
06 0E 2B 34 01 01 01 01

0E 01 01 03 15 00 00 00
Frag Circle Radius Meters uint16 2

Size of fragmentation circle selected by the aircrew.
Resolution: 1 meter

7
06 0E 2B 34 01 01 01 01

01 04 07 02 00 00 00 00
Frame Code None uint32 4

Range is from 0 to 4,294,967,296. Counter runs at
60 Hz

8
06 0E 2B 34 01 01 01 01

0E 01 02 03 03 00 00 00
UAS LDS Version Number Number uint8 1

Version number of the LDS document used to
generate a source of LDS KLV metadata. 0 is pre-
release, initial release (0806.0), or test data. 1..255
corresponds to document revisions 1 thru 255. This
version is represented by 0d02.

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

11

RVT LDS

Key Value (hex) Key Name Units Format
Length
in Bytes

Notes

9
06 0E 2B 34 01 01 01 01

0E 01 01 01 19 00 00 00
Video Datarate bps or Hz uint32 4 Video data rate (Digital only), or Analog FM

10
06 0E 2B 34 01 01 01 03

04 01 0B 01 00 00 00 00
Video File Format String ISO7

Max.
127

Video Compression being used. Maximum 127
characters.
Examples:
MPEG2
MPEG4
H.264
Analog FM (non compressed)
As this list is not exhaustive, other values or variants
are also acceptable.

11
06 0E 2B 34 02 0B 01 01

0E 01 03 01 0F 00 00 00
User Defined Data Packlet Varies N/A V

Local set key to include user defined data items
within the RVT KLV Dictionary. Use the values of
the items specified within the User Defined Data
Packlet. The length field is the size of all items to be
packaged within this tag.

12
06 0E 2B 34 02 0B 01 01

0E 01 03 01 0C 00 00 00

Point of Interest Local Data
Set

None N/A V

Local set key to include POI items within RVT KLV
Dictionary. Use POI local set tags within a POI
packet. The length field is the size of all POI items
to be packaged within this tag.

13
06 0E 2B 34 02 0B 01 01

0E 01 03 01 0D 00 00 00

Area of Interest Local Data
Set

None N/A V

Local set key to include AOI items within RVT KLV
Dictionary. Use AOI local set tags within an AOI
packet. The length field is the size of all AOI items
to be packaged within this tag.

14
06 0E 2B 34 01 01 01 01

0E 01 01 03 0A 00 00 00
MGRS Zone None uint8 1

AIRCRAFT: First two characters of Aircraft MGRS
coordinates, UTM zone 01 through 60

15
06 0E 2B 34 01 01 01 01

0E 01 01 03 0B 00 00 00

MGRS Latitude Band and
Grid Square

String ISO7 3

AIRCRAFT: Third, fourth and fifth characters of
Aircraft MGRS coordinates. Third character is the
alpha code for the latitude band (A through Z,
omitting I and O). Fourth and fifth characters are the
2-digit alpha code for the grid square designator
(WGS 84). Note that latitude bands A & B
correspond to Antarctic UPS regions and Y & Z
correspond to Artic UPS regions.

16
06 0E 2B 34 01 01 01 01

0E 01 01 03 0C 00 00 00
MGRS Easting Meters uint24 3

AIRCRAFT: Sixth through tenth character of Aircraft
MGRS coordinates. Range is from 0 to 99,999
representing the 5-digit Easting value in meters.
Resolution: 1 meter

17
06 0E 2B 34 01 01 01 01

0E 01 01 03 0D 00 00 00
MGRS Northing Meters uint24 3

AIRCRAFT: Eleventh through fifteenth character of
Aircraft MGRS coordinates. Range is from 0 to
99,999 representing the 5-digit Northing value in
meters. Resolution: 1 meter

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

12

RVT LDS

Key Value (hex) Key Name Units Format
Length
in Bytes

Notes

18
06 0E 2B 34 01 01 01 01

0E 01 01 03 0A 00 00 00
MGRS Zone None uint8 1

FRAME CENTER: First two characters of Frame
Center MGRS coordinates, UTM zone 01 through
60

19
06 0E 2B 34 01 01 01 01

0E 01 01 03 0B 00 00 00

MGRS Latitude Band and
Grid Square

String ISO7 3

FRAME CENTER: Third, fourth and fifth characters
of Frame Center MGRS coordinates. Third character
is the alpha code for the latitude band (for UTM: C
through X, omitting I and O; for UPS: A, B, Y or Z).
Fourth and fifth characters are the 2-digit alpha code
for the grid square designator (WGS 84).

20
06 0E 2B 34 01 01 01 01

0E 01 01 03 0C 00 00 00
MGRS Easting Meters uint24 3

FRAME CENTER: Sixth through tenth character of
Frame Center MGRS coordinates. Range is from 0
to 99,999 representing the 5-digit Easting value in
meters. Resolution: 1 meter

21
06 0E 2B 34 01 01 01 01

0E 01 01 03 0D 00 00 00
MGRS Northing Meters uint24 3

FRAME CENTER: Eleventh through fifteenth
character of Frame Center MGRS coordinates.
Range is from 0 to 99,999 representing the 5-digit
Northing value in meters. Resolution: 1 meter

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

13

Table 6-2: Point of Interest (POI) Local Data Set

Point of Interest Local Data Set

Key Value (hex) Key Name Units Format
Length
in Bytes

Notes

06 0E 2B 34 02 0B 01 01

0E 01 03 01 0C 00 00 00

Point of Interest Local Data
Set

None N/A Variable
This is the Universal Key for the Point of Interest

Local Data Set

Tag
ID

Key Value (hex) Key Name Units Format
Length
in Bytes

Notes

1
06 0E 2B 34 01 01 01 01

0E 01 01 03 16 00 00 00
POI/AOI Number Number uint16

2 POI Number
** REQUIRED when sending a POI **

2
06 0E 2B 34 01 01 01 01

0E 01 01 03 17 00 00 00
POI Latitude Degrees int32 4

POI Latitude. Based on WGS84 ellipsoid. Map -
(2^31-1)..(2^31-1) to +/- 90. Use -(2^31) as an
"error" indicator. -(2^31) = 0x80000000. Resolution:
~42 nano degrees.
** REQUIRED when sending a POI **

3
06 0E 2B 34 01 01 01 01

0E 01 01 03 18 00 00 00
POI Longitude Degrees int32 4

POI Longitude. Based on WGS84 ellipsoid. Map -
(2^31-1)..(2^31-1) to +/- 180. Use -(2^31) as an
"error" indicator. -(2^31) = 0x80000000. Resolution:
~84 nano degrees.
** REQUIRED when sending a POI **

4
06 0E 2B 34 01 01 01 01

0E 01 01 03 19 00 00 00
POI Altitude Meters uint16 2

Altitude of POI as measured from Mean Sea Level
(MSL). Map 0..(2^16-1) to -900..19000 meters. 1
meter = 3.2808399 feet. Resolution: ~0.3 meters.

5
06 0E 2B 34 01 01 01 01

0E 01 01 03 1A 00 00 00
POI/AOI Type None int8 1

Target Identifier: 1=“Friendly”, 2=“Hostile”,
3="Target", or 4=“Unknown”

6
06 0E 2B 34 01 01 01 01

0E 01 01 03 1B 00 00 00
POI/AOI Text String ISO7

Max.
2048

User Defined String.

7
06 0E 2B 34 01 01 01 01

0E 01 01 03 1C 00 00 00
POI Source Icon String ISO7

Max.
127

Per MIL-STD-2525B. Maximum 127 characters.
Icon used in FalconView.

8
06 0E 2B 34 01 01 01 01

0E 01 01 03 1D 00 00 00
POI/AOI Source ID String ISO7

Max.
255

User Defined String.

9
06 0E 2B 34 01 01 01 01

0E 01 01 03 1E 00 00 00
POI/AOI Label String ISO7 16 User Defined String

10
06 0E 2B 34 01 01 01 01

0E 01 04 03 01 00 00 00
Operation ID String ISO7

Max.
127

Operation ID is the identifier for the duration of the
supporting mission or event associated with the
Point of Interest; this is not the platform mission
designation

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

14

Table 6-3: Area of Interest (AOI) Local Data Set

Area of Interest Local Data Set

Key Value (hex) Key Name Units Format
Length
in Bytes

Notes

06 0E 2B 34 02 0B 01 01

0E 01 03 01 0D 00 00 00
Area of Interest Local Data Set None N/A Variable

This is the Universal Key for the Area of Interest
Local Data Set

Tag
ID

Key Value (hex) Key Name Units Format
Length
in Bytes

Notes

1
06 0E 2B 34 01 01 01 01

0E 01 01 03 16 00 00 00
POI/AOI Number Number uint16 2

AOI Number
** REQUIRED when sending an AOI **

2
06 0E 2B 34 01 01 01 03

07 01 02 01 03 07 01 00
Upper Left Lat Degrees int32 4

NW corner of AOI. Based on WGS84 ellipsoid. Map
-(2^31-1)..(2^31-1) to +/- 90. Use -(2^31) as an
"error" indicator. -(2^31) = 0x80000000. Resolution:
~42 nano degrees.
** REQUIRED when sending an AOI **

3
06 0E 2B 34 01 01 01 03

07 01 02 01 03 0B 01 00
Upper Left Long Degrees int32 4

NW corner of AOI. Based on WGS84 ellipsoid. Map
-(2^31-1)..(2^31-1) to +/- 180. Use -(2^31) as an
"error" indicator. -(2^31) = 0x80000000. Resolution:
~84 nano degrees.
** REQUIRED when sending an AOI **

4
06 0E 2B 34 01 01 01 03

07 01 02 01 03 09 01 00
Lower Right Lat Degrees int32 4

SE corner of AOI. Based on WGS84 ellipsoid. Map
-(2^31-1)..(2^31-1) to +/- 90. Use -(2^31) as an
"error" indicator. -(2^31) = 0x80000000. Resolution:
~42 nano degrees.
** REQUIRED when sending an AOI **

5
06 0E 2B 34 01 01 01 03

07 01 02 01 03 0D 01 00
Lower Right Long Degrees int32 4

SE corner of AOI. Based on WGS84 ellipsoid. Map
-(2^31-1)..(2^31-1) to +/- 180. Use -(2^31) as an
"error" indicator. -(2^31) = 0x80000000. Resolution:
~84 nano degrees.
** REQUIRED when sending an AOI **

6
06 0E 2B 34 01 01 01 01

0E 01 01 03 1A 00 00 00
POI/AOI Type None int8 1

Target Identifier: 1=“Friendly”, 2=“Hostile”,
3="Reserved", or 4=“Unknown”
** REQUIRED when sending an AOI **

7
06 0E 2B 34 01 01 01 01

0E 01 01 03 1B 00 00 00
POI/AOI Text String ISO7

Max.
2048

User Defined String.

8
06 0E 2B 34 01 01 01 01

0E 01 01 03 1D 00 00 00
POI/AOI Source ID String ISO7

Max.
255

User Defined String.

9
06 0E 2B 34 01 01 01 01

0E 01 01 03 1E 00 00 00
POI/AOI Label String ISO7 16 User Defined String.

10
06 0E 2B 34 01 01 01 01

0E 01 04 03 01 00 00 00
Operation ID String ISO7

Max.
127

Operation ID is the identifier for the duration of the
supporting mission or event associated with the
Area of Interest. This is not the platform mission
designation

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

15

Table 6-4: User Defined Data Packlet

User Defined Data Packlet

Key Value (hex) Key Name Units Format
Length
in Bytes

Notes

06 0E 2B 34 02 0B 01 01

0F 01 03 01 0E 00 00 00
User Defined Data Packlet None N/A Variable

This is the Universal Key for the User Defined Data
Packlet

Tag
ID

Key Value (hex) Key Name Units Format
Length
in Bytes

Notes

1
06 0E 2B 34 01 01 01 01

0E 01 02 03 11 00 00 00
Numeric ID for Data Type N/A uint8 1

Numeric identifier with data type.
Bit Ordering msb first: 87654321
bits 8 & 7 set the data type.
= 00 for strings
= 01 for INT
= 10 for UINT
= 11 for Experimental.
bits 1 to 6 are the integer numeric ID for the user
defined data ranging from 0 to 63 (64 possible user
data items for each type)
** REQUIRED when sending User Defined Data **

2
06 0E 2B 34 01 01 01 01

0E 01 02 03 12 00 00 00
User Data N/A N/A V

User Data. Data type defined in byte 1 of this
packet with variant (uint16, uint32, etc) extracted
from the overall pack length.
** REQUIRED when sending User Defined Data **

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

16

7 Glossary of Acronyms and Symbols

AOI Area of Interest

BER Basic Encoding Rules

KLV Key-Length-Value

LDS Local Data Set

MISB Motion Imagery Standards Board

MSB Most Significant Byte

msb Most Significant Bit

OSRVT One System Remote Video Terminal

POI Point of Interest

ROVER Remote Operations Video Enhanced Receiver

RVT Remote Video Terminal

UINT Unsigned Integer

8 Appendix: Calculating the RVT LDS CRC

A Cyclic Redundancy Check (CRC) is a type of hash function used to produce a checksum. The

checksum is used to detect errors after transmission or storage. A CRC is computed and

appended before transmission or storage, and verified afterwards by recipient to confirm that no

changes occurred on transit. The CRC used is the CRC-32-ISO/IEC 13818-1:2000 (MPEG2).

Below is an example of C++ code necessary to calculate the CRC-32 on a block of data:

class CRC32MPEG
{
private: // CONSTANTS

 static const unsigned long DEFAULT_POLYNOMIAL = 0x04c11db7L;
 static const unsigned long CRC_ACCUM_INIT = 0xFFFFFFFF;

public: // FUNCTIONS

 CRC32MPEG(void);
 unsigned long Update(char *data_blk_ptr, int data_blk_size);
 inline void Init(void) { m_crcAccum = CRC_ACCUM_INIT; }

private: // VARIABLES

 unsigned long m_crcAccum;
 static const unsigned long m_crcTable[256];
};

UNCLASSIFIED

MISB EG 0806.2 RVT Local Data Set

UNCLASSIFIED

17

/* MPEG CRC-32 Table */
const unsigned long CRC32MPEG::m_crcTable[256] = {
 0x00000000, 0x04C11DB7, 0x09823B6E, 0x0D4326D9, 0x130476DC, 0x17C56B6B,
 0x1A864DB2, 0x1E475005, 0x2608EDB8, 0x22C9F00F, 0x2F8AD6D6, 0x2B4BCB61,
 0x350C9B64, 0x31CD86D3, 0x3C8EA00A, 0x384FBDBD, 0x4C11DB70, 0x48D0C6C7,
 0x4593E01E, 0x4152FDA9, 0x5F15ADAC, 0x5BD4B01B, 0x569796C2, 0x52568B75,
 0x6A1936C8, 0x6ED82B7F, 0x639B0DA6, 0x675A1011, 0x791D4014, 0x7DDC5DA3,
 0x709F7B7A, 0x745E66CD, 0x9823B6E0, 0x9CE2AB57, 0x91A18D8E, 0x95609039,
 0x8B27C03C, 0x8FE6DD8B, 0x82A5FB52, 0x8664E6E5, 0xBE2B5B58, 0xBAEA46EF,
 0xB7A96036, 0xB3687D81, 0xAD2F2D84, 0xA9EE3033, 0xA4AD16EA, 0xA06C0B5D,
 0xD4326D90, 0xD0F37027, 0xDDB056FE, 0xD9714B49, 0xC7361B4C, 0xC3F706FB,
 0xCEB42022, 0xCA753D95, 0xF23A8028, 0xF6FB9D9F, 0xFBB8BB46, 0xFF79A6F1,
 0xE13EF6F4, 0xE5FFEB43, 0xE8BCCD9A, 0xEC7DD02D, 0x34867077, 0x30476DC0,
 0x3D044B19, 0x39C556AE, 0x278206AB, 0x23431B1C, 0x2E003DC5, 0x2AC12072,
 0x128E9DCF, 0x164F8078, 0x1B0CA6A1, 0x1FCDBB16, 0x018AEB13, 0x054BF6A4,
 0x0808D07D, 0x0CC9CDCA, 0x7897AB07, 0x7C56B6B0, 0x71159069, 0x75D48DDE,
 0x6B93DDDB, 0x6F52C06C, 0x6211E6B5, 0x66D0FB02, 0x5E9F46BF, 0x5A5E5B08,
 0x571D7DD1, 0x53DC6066, 0x4D9B3063, 0x495A2DD4, 0x44190B0D, 0x40D816BA,
 0xACA5C697, 0xA864DB20, 0xA527FDF9, 0xA1E6E04E, 0xBFA1B04B, 0xBB60ADFC,
 0xB6238B25, 0xB2E29692, 0x8AAD2B2F, 0x8E6C3698, 0x832F1041, 0x87EE0DF6,
 0x99A95DF3, 0x9D684044, 0x902B669D, 0x94EA7B2A, 0xE0B41DE7, 0xE4750050,
 0xE9362689, 0xEDF73B3E, 0xF3B06B3B, 0xF771768C, 0xFA325055, 0xFEF34DE2,
 0xC6BCF05F, 0xC27DEDE8, 0xCF3ECB31, 0xCBFFD686, 0xD5B88683, 0xD1799B34,
 0xDC3ABDED, 0xD8FBA05A, 0x690CE0EE, 0x6DCDFD59, 0x608EDB80, 0x644FC637,
 0x7A089632, 0x7EC98B85, 0x738AAD5C, 0x774BB0EB, 0x4F040D56, 0x4BC510E1,
 0x46863638, 0x42472B8F, 0x5C007B8A, 0x58C1663D, 0x558240E4, 0x51435D53,
 0x251D3B9E, 0x21DC2629, 0x2C9F00F0, 0x285E1D47, 0x36194D42, 0x32D850F5,
 0x3F9B762C, 0x3B5A6B9B, 0x0315D626, 0x07D4CB91, 0x0A97ED48, 0x0E56F0FF,
 0x1011A0FA, 0x14D0BD4D, 0x19939B94, 0x1D528623, 0xF12F560E, 0xF5EE4BB9,
 0xF8AD6D60, 0xFC6C70D7, 0xE22B20D2, 0xE6EA3D65, 0xEBA91BBC, 0xEF68060B,
 0xD727BBB6, 0xD3E6A601, 0xDEA580D8, 0xDA649D6F, 0xC423CD6A, 0xC0E2D0DD,
 0xCDA1F604, 0xC960EBB3, 0xBD3E8D7E, 0xB9FF90C9, 0xB4BCB610, 0xB07DABA7,
 0xAE3AFBA2, 0xAAFBE615, 0xA7B8C0CC, 0xA379DD7B, 0x9B3660C6, 0x9FF77D71,
 0x92B45BA8, 0x9675461F, 0x8832161A, 0x8CF30BAD, 0x81B02D74, 0x857130C3,
 0x5D8A9099, 0x594B8D2E, 0x5408ABF7, 0x50C9B640, 0x4E8EE645, 0x4A4FFBF2,
 0x470CDD2B, 0x43CDC09C, 0x7B827D21, 0x7F436096, 0x7200464F, 0x76C15BF8,
 0x68860BFD, 0x6C47164A, 0x61043093, 0x65C52D24, 0x119B4BE9, 0x155A565E,
 0x18197087, 0x1CD86D30, 0x029F3D35, 0x065E2082, 0x0B1D065B, 0x0FDC1BEC,
 0x3793A651, 0x3352BBE6, 0x3E119D3F, 0x3AD08088, 0x2497D08D, 0x2056CD3A,
 0x2D15EBE3, 0x29D4F654, 0xC5A92679, 0xC1683BCE, 0xCC2B1D17, 0xC8EA00A0,
 0xD6AD50A5, 0xD26C4D12, 0xDF2F6BCB, 0xDBEE767C, 0xE3A1CBC1, 0xE760D676,
 0xEA23F0AF, 0xEEE2ED18, 0xF0A5BD1D, 0xF464A0AA, 0xF9278673, 0xFDE69BC4,
 0x89B8FD09, 0x8D79E0BE, 0x803AC667, 0x84FBDBD0, 0x9ABC8BD5, 0x9E7D9662,
 0x933EB0BB, 0x97FFAD0C, 0xAFB010B1, 0xAB710D06, 0xA6322BDF, 0xA2F33668,
 0xBCB4666D, 0xB8757BDA, 0xB5365D03, 0xB1F740B4
};

CRC32MPEG::CRC32MPEG(void)
: m_crcAccum(CRC_ACCUM_INIT) {
}
unsigned long CRC32MPEG::Update(char *data_blk_ptr, int data_blk_size) {
 for(int j = 0; j < data_blk_size; j++) {
 int i = ((int)(m_crcAccum >> 24) ^ *data_blk_ptr++) & 0xff;
 m_crcAccum = (m_crcAccum << 8) ^ m_crcTable[i];
 }
 return m_crcAccum;
}

