1 Scope

This Standard (ST) describes a generalized method of transforming two-dimensional data (or points) from one coordinate system into a second two-dimensional coordinate system. This Generalized Transformation may be used for various image-to-image transformations such as an affine transformation by simply equating some parameters to be equal to zero. In addition, this Generalized Transformation may describe some homographic-like transformations.

This ST defines three items:

1) The different methods of implementation and constraints that need to be enforced to maintain certain transformation relationships.

2) The mandatory method of uncertainty propagation to be implemented on systems where uncertainty information is needed.

3) The KLV Local Set (LS) that represents all the parameters for the Generalized Transformation.

2 References

2.1 Normative Reference

The following references and the references contained therein are normative.

[2] MISB ST 0107.2, Bit and Byte Order for Metadata in Motion Imagery Files and Streams, Feb 2014

2.2 Informative References

3 Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 1202.2</td>
<td>2/26/2015</td>
<td>• Added requirements ST 1202.2-10 & ST 1202.2-11 to clarify implementation of standard deviation values and correlation coefficients; added information on Fast Steering Mirrors; added reference ST 1201</td>
</tr>
</tbody>
</table>

4 Abbreviations and Acronyms

- **CCFPA**: Combined Composite Focal Plane Array
- **CPT**: Child-Parent Transformation
- **CSM TRD**: Community Sensor Model Technical Requirements Document
- **CT**: Chipping Transformation
- **DPIT**: Default Pixel-Space to Image-Space Transformation
- **FLOAT**: IEEE Single precision floating point number
- **FLP**: Floating Length Pack
- **FPA**: Focal Plane Array
- **FSM**: Fast Steering Mirror
- **INT**: IEEE Integer
- **KLV**: Key-Length-Value
- **LS**: Local Set
- **MISB**: Motion Imagery Standards Board
- **NDT**: No Defined Transformation
- **OT**: Optical Transformation

5 Introduction

This standard defines a Generalized Transformation based on the foundational two-dimensional projective transformation. From the Generalized Transformation, this ST defines four types of commonly used derived transformations, and a methodology for extending support for additional derived transformations. All derived transformations assume that when a parameter is not given, it is equal to zero. This assumption helps in the implementation of transformations. As such, if all parameters are assumed to be equal to zero, then the resulting transformation returns an output identically equivalent to its input.

In addition, transformation data may be accompanied by uncertainty information that describes the quality of the transformation; however, it is not required. This ST defines a method to describe the standard deviation and correlation coefficient information that accompanies the transformation. To prevent incorrect error propagation, all constraints that describe the individual transformation must be accounted for when invoking the stochastic model.

Finally, a LS (Local Set) is defined that contains the transformation parameters necessary to implement the Generalized Transformation. This LS maps 16-byte Universal Keys assigned to
each individual parameter of the Generalized Transformation to 1-byte Tags for efficiency purposes.

The transformation data provides the parameters for mapping between two-dimensional spaces. In order to use this transformation, it must be associated with one of the two-dimensional spaces, which provides the context of the transformation. In order to provide this context this LS must be used within a “parent” KLV set. This means that this LS is never used standalone or without being embedded in another LS.

6 Generalized Transformation

The Generalized Transformation describes a class of two-dimensional projective transformations intended for image-space coordinate transformations. The two-dimensional projective transformation is the foundation of the Generalized Transformation. The purpose of this transformation is to define a mathematical mapping from points on one plane to points on another plane. For this reason, a system of homogeneous coordinates is used. The following two equations provide a mathematical description of the plane-to-plane projective transformation relation of input to output image coordinates.

\[
\begin{align*}
 x_{out} &= \frac{(1 - A)x_{in} + By_{in} + C}{Gx_{in} + Hy_{in} + 1} \quad \text{Equation 1} \\
 y_{out} &= \frac{Dx_{in} + (1 - E)y_{in} + F}{Gx_{in} + Hy_{in} + 1} \quad \text{Equation 2}
\end{align*}
\]

The form of Equation 1 and Equation 2 is slightly different than how a projective transformation is typically described, where the terms (1 - A) and (1 - E) are normally expressed as just A and E respectively. This modification allows for all values in the expression to be equal to zero without any need for special cases. With all constants (A through H) equal to zero, the transformation yields coordinates identically equal to the input. This is advantageous because the transformation can always be executed regardless of the input data (e.g. if one or more of the parameters are zero).

As this transformation is a projective transformation, the inverse may be written as a function of the original parameters. This, again, has advantages because only one set of parameters is needed to define the forward transformation and the inverse transformation. The inverse of Equation 1 and Equation 2 derived through a series of algebraic steps results in Equation 3 and Equation 4 respectively.

\[
\begin{align*}
 x_{in} &= \frac{((1 - E)FH)x_{out} + (CHB)y_{out} + (BF - C(1 - E))}{(DH - G(1 - E))x_{out} + (GBH(1 - A))y_{out} + ((1 - A)(1 - E) - DB)} \quad \text{Equation 3}
\end{align*}
\]
\[y_{in} = \frac{(GF - D)x_{out} + ((1 - A) - CG)y_{out} + (DC - F(1 - A))}{(DH - G(1 - E))x_{out} + (GB - H(1 - A))y_{out} + ((1 - A)(1 - E) - DB)} \]

Equation 4

Equations 1-4 define a number of two-dimensional projective transformations and their inverses. In many imagery applications, a two-dimensional affine transformation requires six parameters. This set of six parameters is a subset of the original eight parameters described above. The Appendix contains various formulations of projective transformations and the constraints needed to create various “standard” transformations.

6.1 Transformation Types

The derived transformations defined in this document are identified in Table 1 and can be represented by their enumeration value in the subsequent Generalized Transformation Local Set (LS).

<table>
<thead>
<tr>
<th>Enumeration Value</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Other – No Defined Transformation (NDT)</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>Chipping Transformation (CT)</td>
<td>Pixels</td>
</tr>
<tr>
<td>2</td>
<td>Child-Parent Transformation (CPT)</td>
<td>Millimeters</td>
</tr>
<tr>
<td>3</td>
<td>Default Pixel-Space to Image-Space Transformation (DPIT)</td>
<td>Millimeters</td>
</tr>
<tr>
<td>4</td>
<td>Optical Transformation (OT)</td>
<td>Millimeters</td>
</tr>
</tbody>
</table>

6.1.1 Other – No Defined Transformation

An enumeration value equal to “0” implies the transformation type is not defined; however, this does not prevent the user from exploiting the information contained within the Generalized Transformation LS.

6.1.2 Chipping Transformation

An enumeration value equal to one “1” signifies the transmitted image is a chip (or sub-region) from a larger image. Examples of a chipped image are: 1) a sub-region of an image that may be digitally enlarged (zoom); 2) a sub-region of an image selected to reduce bandwidth, or to provide higher quality within the sub-region. Further information on this transformation is given in Section 7.1.1.

6.1.3 Child-Parent Transformation

An enumeration value equal to two “2” indicates the transformation of a child focal plane array (FPA) to its parent FPA (e.g. example defined in MISB ST 1002[5]). This CPT is a plane-to-
plane transformation used to transform between FPA’s in image space. Further description of this transformation is given in Section 7.1.2.

6.1.4 Default Pixel-Space to Image-Space Transformation

An enumeration value equal to three “3” is the default pixel-space to image-space transformation. Further information on this transformation is given in Section 7.1.3.

6.1.5 Optical Transformation

An enumeration value equal to four “4” indicates the pixel data of an image is a translation, rotation, scale or skew from the originating FPA to final optical focal plane. This may occur when the originating FPA is a subset of an entire optical focal plane. An example is a Combined Composite Focal Plane Array (CCFPA) sensor, where multiple focal plane array detectors combine to image a single optical focal plane. This optical transformation is a plane-to-plane transformation to transform from FPA to the optical image plane. In addition to providing a transformation from FPA to CCFPA, the optical transformation may also support the effects of coudé paths or Fast Steering Mirrors (FSM). Coudé path and FSM effects may mimic that of the transformation between FPA and CCFPA. They may also differ, however, by translating, rotating, scaling or skewing the optical image plane. This document does not provide a description of how to model coudé path and FSM; however, through analytics the effects of coudé path and FSM can be modeled through the optical transformation. Further description of this transformation is given in Section 7.1.4.

6.1.6 Extensibility for New Transformations

Additional derived transformations may be added to this ST to support new capabilities.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Additional derived transformations supported by the MISB shall be added to MISB ST 1202 Table 1 along with supporting information regarding type and use.</th>
</tr>
</thead>
</table>

6.2 Uncertainty Propagation

In many applications, the knowledge of the uncertainty of all estimated values is critical to understand the performance of a system. Thus, it is desirable to provide a means to propagate the uncertainty information of the transformation parameters. The Generalized Transformation LS utilizes the format described in MISB ST 1010[3] for transmitting the standard deviation and correlation coefficient information.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>When uncertainty information of the Generalized Transformation parameters is available, uncertainty information shall be represented by a Standard Deviation</th>
</tr>
</thead>
</table>
Correlation Coefficient Floating Length Pack (FLP) in accordance with MISB ST 1010[3].

The Standard Deviation Correlation Coefficient FLP, as defined in MISB ST 1010, requires the parent LS (e.g. the Generalized Transformation LS in this case) to define the order of parameters to associate uncertainty information.

<table>
<thead>
<tr>
<th>Requirement(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 1202.1-03</td>
<td>The matrix size in the Standard Deviation Correlation Coefficient FLP shall be eight (8) to represent all the parameters in the Generalized Transformation.</td>
</tr>
<tr>
<td>ST 1202.1-04</td>
<td>The Standard Deviation Correlation Coefficient FLP LS shall order its entries for the eight elements of the Generalized Transformation LS in the same order as the first eight parameters of MISB ST 1202 - Table 2.</td>
</tr>
<tr>
<td>ST 1202.2-10</td>
<td>Standard deviation values shall be represented by four (4) byte floats.</td>
</tr>
<tr>
<td>ST 1202.2-11</td>
<td>Correlation coefficient values shall be mapped into two (2) byte integers using IMAPB(-1.0, 1.0, 2) (see MISB ST 1201[4]).</td>
</tr>
</tbody>
</table>

The projective transformation is the general case of the two-dimensional to two-dimensional transformation and no constraints exist on the uncertainty propagation. Further information on how to handle the uncertainty propagation for other transformations is addressed in the Appendix.

6.3 Concatenation of Transformations

A benefit of projective transformations is that a combination of projective transformations is itself a projective transformation; however, the order in which these transformations are performed is critical. In the case of determining these transformations for sensor modeling purposes, which assumes an image-to-ground sequence, the order is defined by the following.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 1202.1-05</td>
<td>Transformations shall be performed in the following order: 1) chipping, 2) child-parent, 3) default pixel-space to image-space and 4) image-space coordinates imaged on the focal plane into the optical image-space coordinate system.</td>
</tr>
</tbody>
</table>

- The chipping or digital zoom transformation is the first transformation to be performed. This transformation transforms the image coordinates of the chipped or digitally zoomed image into the original image coordinate system. This is the transformation described in Section 7.1.1.
- The Child-Parent transformation is the second transformation to be performed. This transformation transforms the original image coordinates above of the child image into
the image coordinate system of a parent image. This is the transformation described in Section 7.1.2.

- The default pixel-space to image-space transformation is the third transformation to be performed. This transforms the pixel coordinates into units of millimeters and moves the origin to the center of the image. This is the transformation described in Section 7.1.3.

- The fourth and final transformation transforms the image-space coordinates imaged on the focal plane into the optical image-space coordinate system. This is the transformation described in Section 7.1.4.

The ground-to-image projection sequence is the inverse of the image-to-ground sequence. Uncertainty information may accompany all of the above transformations.

6.4 Generalized Transformation Local Set

The Generalized Transformation LS as defined in this ST has the following requirements:

<table>
<thead>
<tr>
<th>Requirement(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 1202.1-06 All metadata shall be expressed in accordance with MISB ST 0107[2].</td>
</tr>
<tr>
<td>ST 1202.1-07 The version of MISB ST 1202 utilized shall always be sent in the Generalized Transformation LS.</td>
</tr>
<tr>
<td>ST 1202.1-08 When the enumeration value corresponding to the transformation type is not populated in the Generalized Transformation LS, the value shall be assumed to be equal to zero indicating No Defined Transformation.</td>
</tr>
<tr>
<td>ST 1202.1-09 The MISB ST 1202 Local Set shall be embedded within a LS that provides context for the transformation.</td>
</tr>
</tbody>
</table>

Tags and Keys within the Generalized Transformation LS Table 2 defines the Generalized Transformation LS data elements and data order.

Table 2: Generalized Transformation LS

<table>
<thead>
<tr>
<th>Local Set Key</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.0E.2B.34.02.0B.01.01.0E.01.03.05.00.00.00 (CRC 40498)</td>
<td>Generalized Transformation LS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constituent Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag ID</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
7 Appendix

This appendix provides further details on the mapping of the parameters in the unique transformations represented within this ST. These transformation types, their inverses, and the uncertainty propagation are given.

As a general rule, the uncertainty propagation is defined as if all eight parameters are being used. With this assumption, special cases are not needed on the algorithm, or in usage. It is the responsibility of the data provider to populate the uncertainty information correctly in order to properly represent the uncertainties in the transformation.

7.1 Generalized Transformation LS

The Generalized Transformation Local Set supports a number of transformation types that may be needed in the development of a sensor model. One transformation, the default pixel to image-space transformation (enumeration value = 3), is performed on all data. The remaining transformation types are performed according to the needs of the dataset; however, a specific ordering of these transformations is mandatory.
The following four subsections describe these transformations.

7.1.1 Chipping Transformation (CT)

The chipping transformation (enumeration value = 1) is utilized for image chipping and a special subset of image chipping known as digital zoom. The chipping transformation is performed in the pixel coordinate system defined by the Community Sensor Model (CSM) Technical Requirements Document (TRD)[6] (e.g. line and sample (or row and column) measured from the upper left hand corner). This is shown in Figure 1 and Figure 2.

The general form of the chipping transformation is given in Equation 5. A chipped or zoomed image is a sub-region of a larger image without rotation, as illustrated in Figure 3. The transformations needed for executing a sensor model must transform the chipped image coordinates into the original image coordinate space (*i.e.* the location of the original pixels must be known).
The transformation parameters for chipping are computed from a combination of a number of parameters, which are described below.

\[
\begin{align*}
A &= 1 - \frac{1}{sf} \quad \text{Equation 6} \\
B &= 0 \quad \text{Equation 7} \\
C &= L_T - (1 - A) \frac{H_C}{2} \quad \text{Equation 8} \\
D &= 0 \quad \text{Equation 9} \\
E &= 1 - \frac{1}{sf} \quad \text{Equation 10} \\
F &= S_T - (1 - E) \frac{W_C}{2} \quad \text{Equation 11} \\
G &= 0 \quad \text{Equation 12} \\
H &= 0 \quad \text{Equation 13}
\end{align*}
\]
The translation values, L_T and S_T, in Equation 8 and Equation 11 describe the location of the center of the chipped image within the original image. The value sf is the scale factor used to scale the image. It is assumed that sf is equally applied to both a line and sample. The variables L and S describe the line and sample coordinates, respectively, of the point of interest. In Equation 5, the subscript O refers to the original image coordinates and the subscript C refers to the chipped image coordinates. Finally, the variables H_C and W_C are the chipped image height and width, respectively.

A special case of the chipping transformation is a Digital Zoom of the original image. A Digital Zoom uses the center region of the original image and produces a new image with new coordinates and same dimensions as the original image, as illustrated in Figure 4. For this special case the last terms of Equation 5 can be computed from the size of the original image as shown in Equation 14.

\[
\begin{bmatrix}
L_O \\
S_O
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{sf} & 0 \\
0 & \frac{1}{sf}
\end{bmatrix}
\begin{bmatrix}
L_C \\
S_C
\end{bmatrix}
+ \begin{bmatrix}
\frac{H_O}{2}(1 - \frac{1}{sf}) \\
\frac{W_O}{2}(1 - \frac{1}{sf})
\end{bmatrix}
\]

Equation 14

The transformation parameters for digital zoom are computed from a combination of a number of parameters, which is described below.

\[
A = 1 - \frac{1}{sf}
\]

Equation 15

\[
B = 0
\]

Equation 16

\[
C = \frac{H_O}{2}(1 - \frac{1}{sf})
\]

Equation 17

Figure 4: Digital Zoom Transformation
The value \(sf \) is the scale value used to apply a digital zoom to an image. For example, for a 2X digital zoom \(sf = 2 \). It is assumed \(sf \) is equally applied to both line and sample. The variables \(L \) and \(S \) describe the line and sample coordinates, respectively, of the point of interest. The subscript \(O \) is in reference to the original image coordinates and the subscript \(C \) is in reference to the chipped image coordinates. Finally, the variables \(H_o \) and \(W_o \) are the original image height and width, respectively.

The chipping transformation only produces rescaled and translated images. The parameters that describe the chipping transformation are assumed to be known needing no uncertainty information about these parameters. Because of this, there is typically no stochastic model that accompanies this transformation.

The values defined in Equation 15 through Equation 22 or Equation 6 through Equation 13 can be used to define the inverse transformation using Equation 3 and Equation 4.

7.1.2 Child-Parent Transformation (CPT)

The Child-Parent Transformation (enumeration value = 2) is used in transforming a child focal plane array to its parent focal plane array. These two arrays are related within multiple sensors. An example of this is a co-boresighted sensor system with sensors contained within the same turret. In this formulation, one focal plane must be chosen as the “parent” focal plane. This focal plane is what metadata, such as photogrammetry metadata, is in reference. The “child” focal plane is the image being transformed into the “parent” sensor’s coordinate system. The transformation can include rotation, translation and scaling. This is done by applying an eight parameter transformation via the General Transformation described in Equation 1 and Equation 2, where the child image coordinates are represented by the “in” subscripts, the parent image coordinates are represented by the “out” subscripts, and the variables \(L_{in} \) and \(S_{in} \) to describe the line and sample coordinates in the child image and the variables \(L_{out} \) and \(S_{out} \) to describe the line and sample coordinates in the parent image.

\[
L_{out} = \frac{(1 - A)L_{in} + BS_{in} + C}{GL_{in} + HS_{in} + 1} \tag{Equation 23}
\]
The CPT may be inserted into the parent LS invoking this transformation. The CPT does not require any unique mapping into the metadata stream.

The transformation values in Equation 23 and Equation 24 can be used to define the inverse transformation in Equation 3 and Equation 4.

7.1.3 Default Pixel-Space to Image-Space Transformation (DPIT)

The default pixel-space to image-space transformation has two representations. The first is the CSM TRD defined approach for motion imagery; the second is a generalized approach for other imagery modalities. The definitions for these cases are in 7.1.3.1 and 7.1.3.2 respectively.

7.1.3.1 CSM TRD Default Pixel to Image-Space Transformation

For motion imagery, the default transformation (enumeration value = 3) is the assumed transformation in constructing a CSM compliant sensor model of a full image. That is, the full focal pane array is transmitted and represented by the metadata stream. This is the transformation assumed to be contained within MISB ST 1107[7] that converts the pixel coordinates into the image coordinates for the sensor model. This transformation is defined by Equation 25.

\[
\begin{bmatrix}
 x \\
 y
\end{bmatrix} =
\begin{bmatrix}
 0 & p2m_x \\
 -p2m_y & 0
\end{bmatrix}
\begin{bmatrix}
 L - \frac{H}{2} \\
 W - \frac{W}{2}
\end{bmatrix} \tag{Equation 25}
\]

The value \(p2m_x\) and \(p2m_y\) are the dimensions given to each individual pixel. These pixels may, or may not, be square. The variables \(L\) and \(S\) describe the line and sample pixel coordinates, respectively, of the point of interest. The variables \(H\) and \(W\) are the full image height and width, respectively. Finally, the variables \(x\) and \(y\) are the image coordinates.

This transformation may be inserted into the parent LS invoking the default transformation; however, it is not needed because it is assumed to be contained within MISB ST 1107. If it is present in the metadata stream, the following mapping is applied:

\[
\begin{align*}
A &= 1 \\
B &= p2m_x \\
C &= -p2m_x \frac{W}{2}
\end{align*} \tag{Equation 26-28}
\]
\[D = -p_2m_y \] \hspace{1cm} \text{Equation 29}

\[E = 1 \] \hspace{1cm} \text{Equation 30}

\[F = p_2m_y \frac{H}{2} \] \hspace{1cm} \text{Equation 31}

\[G = 0 \] \hspace{1cm} \text{Equation 32}

\[H = 0 \] \hspace{1cm} \text{Equation 33}

As this is the default transformation and considered a known constant, there is typically not a stochastic model that accompanies this transformation.

The values defined in Equation 25 through Equation 33 may be used to define the inverse transformation using Equation 3 and Equation 4.

7.1.3.2 Generalized Pixel to Image-Space Transformation

For other imagery modalities not using the CSM TRD defined pixel-space to image-space transformation, the transformation (enumeration value = 3) is the assumed generalized transformation that defines the transformation between the pixel image coordinate system and the image coordinate system. This is accomplished by applying the Generalized Transformation described in Equation 34 and Equation 35, where the pixel image coordinates are represented by the “\text{in}” subscripts, and the image coordinates are represented by the “\text{out}” subscripts. This transformation was defined in the main body of text, but is being repeated below for reference.

\[x_{\text{out}} = \frac{(1 - A)L_{\text{in}} + BS_{\text{in}} + C}{GL_{\text{in}} + HS_{\text{in}} + 1} \] \hspace{1cm} \text{Equation 34}

\[y_{\text{out}} = \frac{DL_{\text{in}} + (1 - E)S_{\text{in}} + F}{GL_{\text{in}} + HS_{\text{in}} + 1} \] \hspace{1cm} \text{Equation 35}

The generalized default pixel-space to image-space transformation introduces no new variables. It uses the variables \(L_{\text{in}}\) and \(S_{\text{in}}\) to describe the line and sample coordinates in the pixel image and uses the variables \(x_{\text{out}}\) and \(y_{\text{out}}\) to describe the x and y coordinates in the image coordinate system. The transformation values in Equation 34 and Equation 35 may be used to define the inverse transformation in Equation 3 and Equation 4.

7.1.4 Optical Transformation (OT)

The optical transformation (enumeration value = 4) is the assumed transformation used in transforming a FPA to a CCFPA or the effects of coudé path and FSM. These two arrays are optically related within one sensor. The relationship occurs when the pixel data of the image is a translation, rotation, scale or skew from the optical focal plane. A transformation must be done to
transform the focal plane array to the optical focal plane array. Similar to the CPT, the two arrays consist of an “out” and “in” array. The optical focal plane array is considered the “out” array while the originating FPA is considered the “in” array. The eight parameter transformation via the General Transformation described in Equation 1 and Equation 2 is applied, and is repeated below for reference.

\[
x_{out} = \frac{(1 - A)x_{in} + B y_{in} + C}{G x_{in} + H y_{in} + 1} \quad \text{Equation 36}
\]

\[
y_{out} = \frac{D x_{in} + (1 - E)y_{in} + F}{G x_{in} + H y_{in} + 1} \quad \text{Equation 37}
\]

The OT introduces no new variables. It uses the variables \(x_{in}\) and \(y_{in}\) to describe the originating FPA image coordinates, and the variables \(x_{out}\) and \(y_{out}\) to describe the optical image coordinates.

The OT may be inserted into the parent LS invoking the optical transformation. The OT does not require any unique mapping into the metadata stream.

The OT above is the General Transformation described in the main body of this document. Uncertainty propagation for the OT is the same as the General Transformation. This was described in depth in section 6.2.

The values defined in Equation 36 and Equation 37 may be used to define the inverse transformation in Equation 3 and Equation 4.